Modelling Asymmetric Dependence Using Copula Functions: An Application to Value-at-Risk in the Energy Sector
Author
Abstract
Suggested Citation
DOI: 10.22004/ag.econ.50452
Download full text from publisher
Other versions of this item:
- Andrea Bastianin, 2009. "Modelling Asymmetric Dependence Using Copula Functions: An application to Value-at-Risk in the Energy Sector," Working Papers 2009.24, Fondazione Eni Enrico Mattei.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Karel Janda & Štěpán Krška & Jan Průša, 2014. "Česká fotovoltaická energie: modelový odhad nákladů na její podporu [Czech Photovoltaic Energy: Model Estimation of The Costs of its Support]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(3), pages 323-346.
- Wanat, Stanisław & Papież, Monika & Śmiech, Sławomir, 2014. "Causality in distribution between European stock markets and commodity prices: Using independence test based on the empirical copula," MPRA Paper 57706, University Library of Munich, Germany.
- Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
- Shegorika Rajwani & Dilip Kumar, 2019. "Measuring Dependence Between the USA and the Asian Economies: A Time-varying Copula Approach," Global Business Review, International Management Institute, vol. 20(4), pages 962-980, August.
- Westner, Günther & Madlener, Reinhard, 2012.
"Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis,"
Energy Economics, Elsevier, vol. 34(1), pages 31-44.
- Westner, Günther & Madlener, Reinhard, 2010. "Investment in New Power Generation under Uncertainty: Benefits of CHP vs Condensing Plants in a Copula-Based Analysis," FCN Working Papers 12/2010, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Li, Jie & Li, Ping, 2021. "Empirical analysis of the dynamic dependence between WTI oil and Chinese energy stocks," Energy Economics, Elsevier, vol. 93(C).
- Wen, Xiaoqian & Wei, Yu & Huang, Dengshi, 2012. "Measuring contagion between energy market and stock market during financial crisis: A copula approach," Energy Economics, Elsevier, vol. 34(5), pages 1435-1446.
- Štěpán Chrz & Karel Janda & Ladislav Krištoufek, 2014. "Modelování provázanosti trhů potravin, biopaliv a fosilních paliv [Modeling Interconnections within Food, Biofuel, and Fossil Fuel Markets]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(1), pages 117-140.
- Zhu, Hui-Ming & Li, Rong & Li, Sufang, 2014. "Modelling dynamic dependence between crude oil prices and Asia-Pacific stock market returns," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 208-223.
- Brian Basvi, 2024. "Application of Copula Methods in Financial Risk Management: Case of the Zimbabwe Stock Exchange and the Victoria Falls Stock Exchange," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 674-695, May.
- Janda, Karel & Krska, Stepan & Prusa, Jan, 2014. "Odhad nákladů na podporu české fotovoltaické energie [The Estimation of the Cost of Promotion of the Czech Photovoltaic Energy]," MPRA Paper 54108, University Library of Munich, Germany.
More about this item
Keywords
Risk and Uncertainty;JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemdp:50452. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.