IDEAS home Printed from https://ideas.repec.org/p/ags/feemdp/50452.html
   My bibliography  Save this paper

Modelling Asymmetric Dependence Using Copula Functions: An Application to Value-at-Risk in the Energy Sector

Author

Listed:
  • Bastianin, Andrea

Abstract

In this paper I have used copula functions to forecast the Value-at-Risk (VaR) of an equally weighted portfolio comprising a small cap stock index and a large cap stock index for the oil and gas industry. The following empirical questions have been analyzed: (i) are there nonnormalities in the marginals? (ii) are there nonnormalities in the dependence structure? (iii) is it worth modelling these nonnormalities in risk- management applications? (iv) do complicated models perform better than simple models? As for questions (i) and (ii) I have shown that the data do deviate from the null of normality at the univariate, as well as at the multivariate level. When considering the dependence structure of the data I have found that asymmetries show up in their unconditional distribution, as well as in their unconditional copula. The VaR forecasting exercise has shown that models based on Normal marginals and/or with symmetric dependence structure fail to deliver accurate VaR forecasts. These findings confirm the importance of nonnormalities and asymmetries both in-sample and out-of-sample.

Suggested Citation

  • Bastianin, Andrea, 2009. "Modelling Asymmetric Dependence Using Copula Functions: An Application to Value-at-Risk in the Energy Sector," Sustainable Development Papers 50452, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemdp:50452
    DOI: 10.22004/ag.econ.50452
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/50452/files/24-09.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.50452?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karel Janda & Štěpán Krška & Jan Průša, 2014. "Česká fotovoltaická energie: modelový odhad nákladů na její podporu [Czech Photovoltaic Energy: Model Estimation of The Costs of its Support]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(3), pages 323-346.
    2. Wanat, Stanisław & Papież, Monika & Śmiech, Sławomir, 2014. "Causality in distribution between European stock markets and commodity prices: Using independence test based on the empirical copula," MPRA Paper 57706, University Library of Munich, Germany.
    3. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    4. Shegorika Rajwani & Dilip Kumar, 2019. "Measuring Dependence Between the USA and the Asian Economies: A Time-varying Copula Approach," Global Business Review, International Management Institute, vol. 20(4), pages 962-980, August.
    5. Westner, Günther & Madlener, Reinhard, 2012. "Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis," Energy Economics, Elsevier, vol. 34(1), pages 31-44.
    6. Li, Jie & Li, Ping, 2021. "Empirical analysis of the dynamic dependence between WTI oil and Chinese energy stocks," Energy Economics, Elsevier, vol. 93(C).
    7. Wen, Xiaoqian & Wei, Yu & Huang, Dengshi, 2012. "Measuring contagion between energy market and stock market during financial crisis: A copula approach," Energy Economics, Elsevier, vol. 34(5), pages 1435-1446.
    8. Štěpán Chrz & Karel Janda & Ladislav Krištoufek, 2014. "Modelování provázanosti trhů potravin, biopaliv a fosilních paliv [Modeling Interconnections within Food, Biofuel, and Fossil Fuel Markets]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(1), pages 117-140.
    9. Zhu, Hui-Ming & Li, Rong & Li, Sufang, 2014. "Modelling dynamic dependence between crude oil prices and Asia-Pacific stock market returns," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 208-223.
    10. Brian Basvi, 2024. "Application of Copula Methods in Financial Risk Management: Case of the Zimbabwe Stock Exchange and the Victoria Falls Stock Exchange," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(5), pages 674-695, May.
    11. Janda, Karel & Krska, Stepan & Prusa, Jan, 2014. "Odhad nákladů na podporu české fotovoltaické energie [The Estimation of the Cost of Promotion of the Czech Photovoltaic Energy]," MPRA Paper 54108, University Library of Munich, Germany.

    More about this item

    Keywords

    Risk and Uncertainty;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemdp:50452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.