IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v26y2008p144-160.html
   My bibliography  Save this article

Explaining and Forecasting Online Auction Prices and Their Dynamics Using Functional Data Analysis

Author

Listed:
  • Wang, Shanshan
  • Jank, Wolfgang
  • Shmueli, Galit

Abstract

No abstract is available for this item.

Suggested Citation

  • Wang, Shanshan & Jank, Wolfgang & Shmueli, Galit, 2008. "Explaining and Forecasting Online Auction Prices and Their Dynamics Using Functional Data Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 144-160, April.
  • Handle: RePEc:bes:jnlbes:v:26:y:2008:p:144-160
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jbes/2008/00000026/00000002/art00002
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Zhang & Jingping Gu & Qi Li, 2011. "Nonparametric panel estimation of online auction price processes," Empirical Economics, Springer, vol. 40(1), pages 51-68, February.
    2. Dass, Mayukh & Jank, Wolfgang & Shmueli, Galit, 2011. "Maximizing bidder surplus in simultaneous online art auctions via dynamic forecasting," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1259-1270, October.
    3. Eppelsheimer, Johann & Jahn, Elke J. & Rust, Christoph, 2022. "The spatial decay of human capital externalities - A functional regression approach with precise geo-referenced data," Regional Science and Urban Economics, Elsevier, vol. 95(C).
    4. Chen Shi & Yujiao Xian & Zhixin Wang & Ke Wang, 2023. "Marginal abatement cost curve of carbon emissions in China: a functional data analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(2), pages 1-25, February.
    5. Farzad Sabzikar & Piotr Kokoszka, 2023. "Tempered functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 280-293, May.
    6. Berrendero, J.R. & Justel, A. & Svarc, M., 2011. "Principal components for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2619-2634, September.
    7. Marie BLUM & Régis BLAZY, 2021. "The three stages of an auction: how do the bid dynamics influence auction prices? Evidence from live art auctions," Working Papers of LaRGE Research Center 2021-10, Laboratoire de Recherche en Gestion et Economie (LaRGE), Université de Strasbourg.
    8. Yixin Lu & Alok Gupta & Wolfgang Ketter & Eric van Heck, 2019. "Dynamic Decision Making in Sequential Business-to-Business Auctions: A Structural Econometric Approach," Management Science, INFORMS, vol. 65(8), pages 3853-3876, August.
    9. Chen, Yaqing & Dawson, Matthew & Müller, Hans-Georg, 2020. "Rank dynamics for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    10. Wenchuan Liu & Yu Zhang & Qi Li, 2015. "A semiparametric varying coefficient model of monotone auction bidding processes," Empirical Economics, Springer, vol. 48(1), pages 313-335, February.
    11. Ernan Haruvy & Peter Popkowski Leszczyc & Octavian Carare & James Cox & Eric Greenleaf & Wolfgang Jank & Sandy Jap & Young-Hoon Park & Michael Rothkopf, 2008. "Competition between auctions," Marketing Letters, Springer, vol. 19(3), pages 431-448, December.
    12. Wolfgang Ketter & John Collins & Maria Gini & Alok Gupta & Paul Schrater, 2012. "Real-Time Tactical and Strategic Sales Management for Intelligent Agents Guided by Economic Regimes," Information Systems Research, INFORMS, vol. 23(4), pages 1263-1283, December.
    13. Zhang, Shu & Jank, Wolfgang & Shmueli, Galit, 2010. "Real-time forecasting of online auctions via functional K-nearest neighbors," International Journal of Forecasting, Elsevier, vol. 26(4), pages 666-683, October.
    14. Wolfgang Jank & Galit Shmueli & Shu Zhang, 2010. "A flexible model for estimating price dynamics in on‐line auctions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 781-804, November.
    15. Cong Feng & Scott Fay & K. Sivakumar, 2016. "Overbidding in electronic auctions: factors influencing the propensity to overbid and the magnitude of overbidding," Journal of the Academy of Marketing Science, Springer, vol. 44(2), pages 241-260, March.
    16. Natasha Zhang Foutz & Wolfgang Jank, 2010. "Research Note—Prerelease Demand Forecasting for Motion Pictures Using Functional Shape Analysis of Virtual Stock Markets," Marketing Science, INFORMS, vol. 29(3), pages 568-579, 05-06.
    17. Han Lin Shang & Kaiying Ji, 2023. "Forecasting intraday financial time series with sieve bootstrapping and dynamic updating," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 1973-1988, December.
    18. Eppelsheimer, Johann & Rust, Christoph, 2020. "The Spatial Decay of Human Capital Externalities - A Functional Regression Approach with Precise Geo-Referenced Data," IAB-Discussion Paper 202021, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    19. Simon Stevenson & James Young, 2015. "The Role of Undisclosed Reserves in English Open Outcry Auctions," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 43(2), pages 375-402, June.
    20. Gottlieb, Andrea & Müller, Hans-Georg, 2012. "A stickiness coefficient for longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4000-4010.
    21. Peter Radchenko & Xinghao Qiao & Gareth M. James, 2015. "Index Models for Sparsely Sampled Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 824-836, June.
    22. Sam K. Hui & Tom Meyvis & Henry Assael, 2014. "Analyzing Moment-to-Moment Data Using a Bayesian Functional Linear Model: Application to TV Show Pilot Testing," Marketing Science, INFORMS, vol. 33(2), pages 222-240, March.
    23. Ketter, W. & Collins, J. & Gini, M. & Gupta, A. & Schrater, P., 2011. "Real-time Tactical and Strategic Sales Management for Intelligent Agents Guided By Economic Regimes," ERIM Report Series Research in Management ERS-2011-012-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:26:y:2008:p:144-160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.