IDEAS home Printed from https://ideas.repec.org/a/anm/alpnmr/v7y2019i2p173-184.html
   My bibliography  Save this article

Reducing Variation of Risk Estimation by Using Importance Sampling

Author

Listed:
  • Hatem Çoban
  • İpek Deveci Kocakoç
  • Şemsettin Erken
  • Mehmet Akif Aksoy

Abstract

In today's world, risk measurement and risk management are of great importance for various economic reasons. Especially in the crisis periods, the tail risk becomes very important in risk estimation. Many methods have been developed for accurate measurement of risk. The easiest of these methods is the Value at Risk (VaR) method. However, standard VaR methods are not very effective in tail risks. This study aims to demonstrate the usage of delta normal method, historical simulation method, Monte Carlo simulation, and importance sampling to calculate the value at risk and to show which method is more effective by applying them to the S&P index between 1993 and 2003.

Suggested Citation

  • Hatem Çoban & İpek Deveci Kocakoç & Şemsettin Erken & Mehmet Akif Aksoy, 2019. "Reducing Variation of Risk Estimation by Using Importance Sampling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 7(2), pages 173-184, December.
  • Handle: RePEc:anm:alpnmr:v:7:y:2019:i:2:p:173-184
    DOI: http://dx.doi.org/10.17093/alphanumeric.605584
    as

    Download full text from publisher

    File URL: https://www.alphanumericjournal.com/media/Issue/volume-7-issue-2-2019/reducing-variation-of-risk-estimation-by-using-importance-sa_z9RFQne.pdf
    Download Restriction: no

    File URL: https://alphanumericjournal.com/article/reducing-variation-of-risk-estimation-by-using-importance-sampling/
    Download Restriction: no

    File URL: https://libkey.io/http://dx.doi.org/10.17093/alphanumeric.605584?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Kahn & A. W. Marshall, 1953. "Methods of Reducing Sample Size in Monte Carlo Computations," Operations Research, INFORMS, vol. 1(5), pages 263-278, November.
    2. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    3. Gupta, Jairaj & Chaudhry, Sajid, 2019. "Mind the tail, or risk to fail," Journal of Business Research, Elsevier, vol. 99(C), pages 167-185.
    4. Tim J. Brereton & Dirk P. Kroese & Joshua C. Chan, 2012. "Monte Carlo Methods for Portfolio Credit Risk," ANU Working Papers in Economics and Econometrics 2012-579, Australian National University, College of Business and Economics, School of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Quoc Dung & Choe, Youngjun, 2019. "Cross-entropy based importance sampling for stochastic simulation models," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Youngjun Choe & Henry Lam & Eunshin Byon, 2018. "Uncertainty Quantification of Stochastic Simulation for Black-box Computer Experiments," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1155-1172, December.
    3. Tang, Qihe & Tang, Zhaofeng & Yang, Yang, 2019. "Sharp asymptotics for large portfolio losses under extreme risks," European Journal of Operational Research, Elsevier, vol. 276(2), pages 710-722.
    4. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    5. Gerardo Manzo & Antonio Picca, 2020. "The Impact of Sovereign Shocks," Management Science, INFORMS, vol. 66(7), pages 3113-3132, July.
    6. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    7. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    8. Rongda Chen & Ze Wang & Lean Yu, 2017. "Importance Sampling for Credit Portfolio Risk with Risk Factors Having t-Copula," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1101-1124, July.
    9. André Lucas & Bernd Schwaab & Xin Zhang, 2017. "Modeling Financial Sector Joint Tail Risk in the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(1), pages 171-191, January.
    10. M. Dietsch & C. Welter-Nicol, 2014. "Do LTV and DSTI caps make banks more resilient?," Débats économiques et financiers 13, Banque de France.
    11. Guangwu Liu, 2015. "Simulating Risk Contributions of Credit Portfolios," Operations Research, INFORMS, vol. 63(1), pages 104-121, February.
    12. İsmail Başoğlu & Wolfgang Hörmann & Halis Sak, 2018. "Efficient simulations for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 260(1), pages 113-128, January.
    13. Collins, Sean & Gallagher, Emily, 2016. "Assessing the credit risk of money market funds during the eurozone crisis," Journal of Financial Stability, Elsevier, vol. 25(C), pages 150-165.
    14. Battulga Gankhuu, 2024. "Bayesian Markov-Switching Vector Autoregressive Process," Papers 2404.11235, arXiv.org, revised Sep 2024.
    15. Jie Shen & Yi Shen & Bin Wang & Ruodu Wang, 2019. "Distributional compatibility for change of measures," Finance and Stochastics, Springer, vol. 23(3), pages 761-794, July.
    16. Saad Alsunbul & Basim Alzugaiby & Sajid Chaudhry & Rhada Boujlil, 2024. "The fatter the tail, the shorter the sail," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(1), pages 331-380, March.
    17. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
    18. Koopman, Siem Jan & Shephard, Neil & Creal, Drew, 2009. "Testing the assumptions behind importance sampling," Journal of Econometrics, Elsevier, vol. 149(1), pages 2-11, April.
    19. Liu, Xiaoqun & Zhang, Yuchen & Tian, Mengqiao & Chao, Youcong, 2023. "Financial distress and jump tail risk: Evidence from China's listed companies," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 316-336.
    20. Víctor Elvira & Luca Martino & Christian P. Robert, 2022. "Rethinking the Effective Sample Size," International Statistical Review, International Statistical Institute, vol. 90(3), pages 525-550, December.

    More about this item

    Keywords

    Delta Normal Method; Importance Sampling; Monte Carlo Simulation; Tail Risk; Value at Risk;
    All these keywords.

    JEL classification:

    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anm:alpnmr:v:7:y:2019:i:2:p:173-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bahadir Fatih Yildirim (email available below). General contact details of provider: https://www.alphanumericjournal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.