IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v191y2019ics0951832018309219.html
   My bibliography  Save this article

Cross-entropy based importance sampling for stochastic simulation models

Author

Listed:
  • Cao, Quoc Dung
  • Choe, Youngjun

Abstract

To efficiently evaluate system reliability based on Monte Carlo simulation, importance sampling is used widely. The optimal importance sampling density was derived in 1950s for the deterministic simulation model, which maps an input to an output deterministically, and is approximated in practice using various methods. For the stochastic simulation model whose output is random given an input, the optimal importance sampling density was derived only recently. In the existing literature, metamodel-based approaches have been used to approximate this optimal density. However, building a satisfactory metamodel is often difficult or time-consuming in practice. This paper proposes a cross-entropy based method, which is automatic and does not require specific domain knowledge. The proposed method uses an expectation–maximization algorithm to guide the choice of a mixture distribution model for approximating the optimal density. The method iteratively updates the approximated density to minimize its estimated discrepancy, measured by estimated cross-entropy, from the optimal density. The mixture model’s complexity is controlled using the cross-entropy information criterion. The method is empirically validated using extensive numerical studies and applied to a case study of evaluating the reliability of wind turbine using a stochastic simulation model.

Suggested Citation

  • Cao, Quoc Dung & Choe, Youngjun, 2019. "Cross-entropy based importance sampling for stochastic simulation models," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:reensy:v:191:y:2019:i:c:s0951832018309219
    DOI: 10.1016/j.ress.2019.106526
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018309219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cadini, F. & Santos, F. & Zio, E., 2014. "An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 109-117.
    2. Dai, Hongzhe & Zhang, Hao & Wang, Wei, 2012. "A support vector density-based importance sampling for reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 86-93.
    3. Joshua Chan & Dirk Kroese, 2011. "Rare-event probability estimation with conditional Monte Carlo," Annals of Operations Research, Springer, vol. 189(1), pages 43-61, September.
    4. Jose Blanchet & Henry Lam, 2014. "Rare-Event Simulation for Many-Server Queues," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1142-1178, November.
    5. Gong, C. & Zhou, W., 2018. "Importance sampling-based system reliability analysis of corroding pipelines considering multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 199-208.
    6. H. Kahn & A. W. Marshall, 1953. "Methods of Reducing Sample Size in Monte Carlo Computations," Operations Research, INFORMS, vol. 1(5), pages 263-278, November.
    7. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    8. Echard, B. & Gayton, N. & Lemaire, M. & Relun, N., 2013. "A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 232-240.
    9. Cadini, F. & Gioletta, A. & Zio, E., 2015. "Improved metamodel-based importance sampling for the performance assessment of radioactive waste repositories," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 188-197.
    10. Morio, Jérôme, 2011. "Non-parametric adaptive importance sampling for the probability estimation of a launcher impact position," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 178-183.
    11. Song, Shufang & Lu, Zhenzhou & Qiao, Hongwei, 2009. "Subset simulation for structural reliability sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 658-665.
    12. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen, Phong T.T. & Manuel, Lance, 2024. "Uncertainty quantification in low-probability response estimation using sliced inverse regression and polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Mehni, Moien Barkhori & Mehni, Mohammad Barkhori, 2023. "Reliability analysis with cross-entropy based adaptive Markov chain importance sampling and control variates," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Jakeman, John D. & Kouri, Drew P. & Huerta, J. Gabriel, 2022. "Surrogate modeling for efficiently, accurately and conservatively estimating measures of risk," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Xia Xiao & Hanwen Qin & Huijuan Fu & Chengde Zhang, 2019. "Improving the Professional Level of Managers Through Individualized Recommendation to Enhance the Quality of Air Pollutant Management in China," Sustainability, MDPI, vol. 11(21), pages 1-15, November.
    5. Amir Abdel Menaem & Rustam Valiev & Vladislav Oboskalov & Taher S. Hassan & Hegazy Rezk & Mohamed N. Ibrahim, 2020. "An Efficient Framework for Adequacy Evaluation through Extraction of Rare Load Curtailment Events in Composite Power Systems," Mathematics, MDPI, vol. 8(11), pages 1-21, November.
    6. Zhang, Xiaobo & Lu, Zhenzhou & Cheng, Kai, 2022. "Cross-entropy-based directional importance sampling with von Mises-Fisher mixture model for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. El Masri, Maxime & Morio, Jérôme & Simatos, Florian, 2021. "Improvement of the cross-entropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keshtegar, Behrooz & Chakraborty, Subrata, 2018. "An efficient-robust structural reliability method by adaptive finite-step length based on Armijo line search," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 195-206.
    2. Youngjun Choe & Henry Lam & Eunshin Byon, 2018. "Uncertainty Quantification of Stochastic Simulation for Black-box Computer Experiments," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1155-1172, December.
    3. Ling, Chunyan & Lu, Zhenzhou & Zhu, Xianming, 2019. "Efficient methods by active learning Kriging coupled with variance reduction based sampling methods for time-dependent failure probability," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 23-35.
    4. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    5. Keshtegar, Behrooz & Kisi, Ozgur, 2018. "RM5Tree: Radial basis M5 model tree for accurate structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 49-61.
    6. Cadini, Francesco & Agliardi, Gian Luca & Zio, Enrico, 2017. "Estimation of rare event probabilities in power transmission networks subject to cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 9-20.
    7. Xu, Jun & Kong, Fan, 2018. "A new unequal-weighted sampling method for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 94-102.
    8. Cadini, F. & Gioletta, A., 2016. "A Bayesian Monte Carlo-based algorithm for the estimation of small failure probabilities of systems affected by uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 15-27.
    9. Wei, Pengfei & Liu, Fuchao & Tang, Chenghu, 2018. "Reliability and reliability-based importance analysis of structural systems using multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 183-195.
    10. Pengfei Wei & Chenghu Tang & Yuting Yang, 2019. "Structural reliability and reliability sensitivity analysis of extremely rare failure events by combining sampling and surrogate model methods," Journal of Risk and Reliability, , vol. 233(6), pages 943-957, December.
    11. Razaaly, Nassim & Congedo, Pietro Marco, 2020. "Extension of AK-MCS for the efficient computation of very small failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    12. Xiao, Sinan & Oladyshkin, Sergey & Nowak, Wolfgang, 2020. "Reliability analysis with stratified importance sampling based on adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    13. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2021. "A Kriging-assisted sampling method for reliability analysis of structures with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    14. Zhan, Hongyou & Xiao, Ning-Cong & Ji, Yuxiang, 2022. "An adaptive parallel learning dependent Kriging model for small failure probability problems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    15. Xu, Jun & Wang, Ding, 2019. "Structural reliability analysis based on polynomial chaos, Voronoi cells and dimension reduction technique," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 329-340.
    16. Menz, Morgane & Gogu, Christian & Dubreuil, Sylvain & Bartoli, Nathalie & Morio, Jérôme, 2020. "Adaptive coupling of reduced basis modeling and Kriging based active learning methods for reliability analyses," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    17. Yu, Weichao & Huang, Weihe & Wen, Kai & Zhang, Jie & Liu, Hongfei & Wang, Kun & Gong, Jing & Qu, Chunxu, 2021. "Subset simulation-based reliability analysis of the corroding natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    19. Li, Wenxiong & Geng, Rong & Chen, Suiyin, 2024. "CSP-free adaptive Kriging surrogate model method for reliability analysis with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Cao, Runan & Sun, Zhili & Wang, Jian & Guo, Fanyi, 2022. "A single-loop reliability analysis strategy for time-dependent problems with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:191:y:2019:i:c:s0951832018309219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.