IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v81y2017icp105-113.html
   My bibliography  Save this article

An approximate multi-period Vasicek credit risk model

Author

Listed:
  • García-Céspedes, Rubén
  • Moreno, Manuel

Abstract

Financial institutions and regulators usually measure credit risk only over a one-year time horizon. Hence, current statistical models can generate closed-form expressions for the one-year loss distribution. Losses over longer horizons are considered using scenario analysis or Monte Carlo simulation. This paper proposes a simple multi-period credit risk model and uses Taylor expansion approximations to estimate the multi-period loss distribution. In this paper we extend the currently available second-order Taylor expansion approximations to credit risk with a third-order term and we use this new approximation to obtain the loss distribution in the multi-period framework. Our results show that the approximation is more accurate under recessions or for portfolios with high probability of default. We also show that, in general, the effect of this third-order adjustment is quite small.

Suggested Citation

  • García-Céspedes, Rubén & Moreno, Manuel, 2017. "An approximate multi-period Vasicek credit risk model," Journal of Banking & Finance, Elsevier, vol. 81(C), pages 105-113.
  • Handle: RePEc:eee:jbfina:v:81:y:2017:i:c:p:105-113
    DOI: 10.1016/j.jbankfin.2017.05.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426617301048
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2017.05.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Repullo, Rafael, 2013. "Cyclical adjustment of capital requirements: A simple framework," Journal of Financial Intermediation, Elsevier, vol. 22(4), pages 608-626.
    2. Gourieroux, C. & Laurent, J. P. & Scaillet, O., 2000. "Sensitivity analysis of Values at Risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 225-245, November.
    3. Mikhail Voropaev, 2009. "Analytical Framework for Credit Portfolios. Part I: Systematic Risk," Papers 0911.0223, arXiv.org, revised Jul 2011.
    4. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    5. Gordy, Michael B. & Marrone, James, 2012. "Granularity adjustment for mark-to-market credit risk models," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1896-1910.
    6. Paul Glasserman & Jingyi Li, 2005. "Importance Sampling for Portfolio Credit Risk," Management Science, INFORMS, vol. 51(11), pages 1643-1656, November.
    7. Breuer, Thomas & Jandačka, Martin & Mencía, Javier & Summer, Martin, 2012. "A systematic approach to multi-period stress testing of portfolio credit risk," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 332-340.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rubén García-Céspedes & Manuel Moreno, 2020. "Random LGD adjustments in the Vasicek credit risk model," The European Journal of Finance, Taylor & Francis Journals, vol. 26(18), pages 1856-1875, December.
    2. Anton van Dyk & Gary van Vuuren, 2023. "Measurement and Calibration of Regulatory Credit Risk Asset Correlations," JRFM, MDPI, vol. 16(9), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fermanian, Jean-David, 2014. "The limits of granularity adjustments," Journal of Banking & Finance, Elsevier, vol. 45(C), pages 9-25.
    2. Rubén García-Céspedes & Manuel Moreno, 2020. "Random LGD adjustments in the Vasicek credit risk model," The European Journal of Finance, Taylor & Francis Journals, vol. 26(18), pages 1856-1875, December.
    3. Avramidis, Panagiotis & Pasiouras, Fotios, 2015. "Calculating systemic risk capital: A factor model approach," Journal of Financial Stability, Elsevier, vol. 16(C), pages 138-150.
    4. Jean-David Fermanian, 2013. "The Limits of Granularity Adjustments," Working Papers 2013-27, Center for Research in Economics and Statistics.
    5. M. B. Gordy & E. Lutkebohmert, 2013. "Granularity Adjustment for Regulatory Capital Assessment," International Journal of Central Banking, International Journal of Central Banking, vol. 9(3), pages 38-77, September.
    6. Rosen, Dan & Saunders, David, 2009. "Analytical methods for hedging systematic credit risk with linear factor portfolios," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 37-52, January.
    7. Susanne Emmer & Dirk Tasche, 2003. "Calculating credit risk capital charges with the one-factor model," Papers cond-mat/0302402, arXiv.org, revised Jan 2005.
    8. Busch, Ramona & Koziol, Philipp & Mitrovic, Marc, 2015. "Many a little makes a mickle: Macro portfolio stress test for small and medium-sized German banks," Discussion Papers 23/2015, Deutsche Bundesbank.
    9. Black, Lamont & Correa, Ricardo & Huang, Xin & Zhou, Hao, 2016. "The systemic risk of European banks during the financial and sovereign debt crises," Journal of Banking & Finance, Elsevier, vol. 63(C), pages 107-125.
    10. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    11. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    12. Yu Takata, 2018. "Application of Granularity Adjustment Approximation Method to Incremental Value-at-Risk in Concentrated Portfolios," Economics Bulletin, AccessEcon, vol. 38(4), pages 2320-2330.
    13. Puzanova, Natalia & Düllmann, Klaus, 2013. "Systemic risk contributions: A credit portfolio approach," Journal of Banking & Finance, Elsevier, vol. 37(4), pages 1243-1257.
    14. Spiliopoulos, Konstantinos & Sowers, Richard B., 2011. "Recovery rates in investment-grade pools of credit assets: A large deviations analysis," Stochastic Processes and their Applications, Elsevier, vol. 121(12), pages 2861-2898.
    15. Laurent, Jean-Paul & Sestier, Michael & Thomas, Stéphane, 2016. "Trading book and credit risk: How fundamental is the Basel review?," Journal of Banking & Finance, Elsevier, vol. 73(C), pages 211-223.
    16. Kupiec, Paul, 2015. "Capital for concentrated credit portfolios," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 8(4), pages 314-322, October.
    17. Scott, Alexandre & Metzler, Adam, 2015. "A general importance sampling algorithm for estimating portfolio loss probabilities in linear factor models," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 279-293.
    18. Richard J Martin, 2011. "Saddlepoint methods in portfolio theory," Papers 1201.0106, arXiv.org.
    19. Grundke, Peter, 2009. "Importance sampling for integrated market and credit portfolio models," European Journal of Operational Research, Elsevier, vol. 194(1), pages 206-226, April.
    20. García-Céspedes, Rubén & Moreno, Manuel, 2014. "Estimating the distribution of total default losses on the Spanish financial system," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 242-261.

    More about this item

    Keywords

    Finance; Credit risk; Approximate methods; Multi-period models;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:81:y:2017:i:c:p:105-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.