IDEAS home Printed from https://ideas.repec.org/a/anm/alpnmr/v2y2014i1p1-12.html
   My bibliography  Save this article

Modeling Natural Gas Prices Volatility

Author

Listed:
  • Fatih Çemrek
  • Hakkı Polat

Abstract

Researches done so far indicate that oil reserves around the word will most probably have been used up in 50 year’s time. This fact has necessitated the researches and use of new energy sources which can be alternative to oil, the most commonly used energy source around the world. Unforgettable Chernobyl nuclear disaster in 1980s, in Ukraine, caused to see the energy glass half empty; and this negative viewpoint has got more acute after the radiation leakage in Fukushima power plant which was damaged in the earthquake in Japan, in 2011. Furthermore, hydroelectric power plants have provoked reaction from many eco-warriors and organizations as they cause ecological disequilibrium through floods in natural habitat. Moreover, it will be pointless to mention coal-fired thermal power plants, which created the term “year without summer” due to the air pollution they caused during Industrial Revolution in England between 18th and 19th centuries. When the topic is energy and its production, market conditions, in which inputs enabling production are dealt in, get affected from various outside/exterior factors. Dynamics of these input markets which are based on delicate balances change constantly; and thus, these changes become influential on aforementioned input prices. Thinking markets selling oil and its derivatives, it becomes more comprehensible that dynamics are significant and related to each other. Without a doubt, one of the energy inputs which are closely dependent on these critical market conditions is natural gas prices. In this study, stability of daily natural gas prices between 1997 and 2012 will be researched and its volatility will be tried to be modeled via ARCH & GARCH model family.

Suggested Citation

  • Fatih Çemrek & Hakkı Polat, 2014. "Modeling Natural Gas Prices Volatility," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 2(1), pages 1-12, June.
  • Handle: RePEc:anm:alpnmr:v:2:y:2014:i:1:p:1-12
    DOI: http://dx.doi.org/10.17093/aj.49750
    as

    Download full text from publisher

    File URL: https://www.alphanumericjournal.com/media/Issue/volume-2-issue-1-2014/modeling-natural-gas-prices-volatility.pdf
    Download Restriction: no

    File URL: https://alphanumericjournal.com/article/modeling-natural-gas-prices-volatility/
    Download Restriction: no

    File URL: https://libkey.io/http://dx.doi.org/10.17093/aj.49750?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chevallier, Julien & Sévi, Benoît, 2012. "On the volatility–volume relationship in energy futures markets using intraday data," Energy Economics, Elsevier, vol. 34(6), pages 1896-1909.
    2. Qin, Xiaoyan & Bessler, David A. & Leatham, David J. & Wu, Ximing & Gan, Li, 2010. "Fundamentals and US natural gas price dynamics," 2010 Annual Meeting, February 6-9, 2010, Orlando, Florida 56501, Southern Agricultural Economics Association.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh, Amir H. & Tamvakis, Michael, 2016. "Market conditions, trader types and price–volume relation in energy futures markets," Energy Economics, Elsevier, vol. 56(C), pages 134-149.
    2. Jawadi, Fredj & Louhichi, Waël & Ameur, Hachmi Ben & Cheffou, Abdoulkarim Idi, 2016. "On oil-US exchange rate volatility relationships: An intraday analysis," Economic Modelling, Elsevier, vol. 59(C), pages 329-334.
    3. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    4. Shively, Gerald E., 2001. "Price thresholds, price volatility, and the private costs of investment in a developing country grain market," Economic Modelling, Elsevier, vol. 18(3), pages 399-414, August.
    5. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    6. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    7. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    8. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    9. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    10. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    11. Chang, Chia-Lin & Hsu, Hui-Kuang, 2013. "Modelling Volatility Size Effects for Firm Performance: The Impact of Chinese Tourists to Taiwan," MPRA Paper 45691, University Library of Munich, Germany.
    12. Budi Setiawan & Marwa Ben Abdallah & Maria Fekete-Farkas & Robert Jeyakumar Nathan & Zoltan Zeman, 2021. "GARCH (1,1) Models and Analysis of Stock Market Turmoil during COVID-19 Outbreak in an Emerging and Developed Economy," JRFM, MDPI, vol. 14(12), pages 1-19, December.
    13. Chia-Lin Chang & Michael McAleer, 2017. "A Simple Test for Causality in Volatility," Econometrics, MDPI, vol. 5(1), pages 1-5, March.
    14. Athanasia Gavala & Nikolay Gospodinov & Deming Jiang, 2006. "Forecasting volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 381-400.
    15. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    16. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. repec:wyi:journl:002087 is not listed on IDEAS
    18. Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Risks, MDPI, vol. 6(4), pages 1-18, September.
    19. Blazsek, Szabolcs & Escribano, Alvaro, 2023. "Score-driven threshold ice-age models: Benchmark models for long-run climate forecasts," Energy Economics, Elsevier, vol. 118(C).
    20. Beaulieu, Marie-Claude, 1995. "Rendements boursiers et inflation," L'Actualité Economique, Société Canadienne de Science Economique, vol. 71(4), pages 455-480, décembre.
    21. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.

    More about this item

    Keywords

    ARCH and GARCH Models; Box-Jenkins; Naturalgas Prices; Time Series Analysis; Unit Root Tests; Volatility;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anm:alpnmr:v:2:y:2014:i:1:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bahadir Fatih Yildirim (email available below). General contact details of provider: https://www.alphanumericjournal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.