IDEAS home Printed from https://ideas.repec.org/a/bla/stratm/v42y2021i1p30-57.html
   My bibliography  Save this article

Machine learning for pattern discovery in management research

Author

Listed:
  • Prithwiraj Choudhury
  • Ryan T. Allen
  • Michael G. Endres

Abstract

Research Summary Supervised machine learning (ML) methods are a powerful toolkit for discovering robust patterns in quantitative data. The patterns identified by ML could be used for exploratory inductive or abductive research, or for post hoc analysis of regression results to detect patterns that may have gone unnoticed. However, ML models should not be treated as the result of a deductive causal test. To demonstrate the application of ML for pattern discovery, we implement ML algorithms to study employee turnover at a large technology company. We interpret the relationships between variables using partial dependence plots, which uncover surprising nonlinear and interdependent patterns between variables that may have gone unnoticed using traditional methods. To guide readers evaluating ML for pattern discovery, we provide guidance for evaluating model performance, highlight human decisions in the process, and warn of common misinterpretation pitfalls. The Supporting Information section provides code and data to implement the algorithms demonstrated in this article. Managerial Summary Supervised machine learning (ML) methods are a powerful toolkit that might help managers and researchers discover interesting patterns in large and complex data. We demonstrate this by using several ML algorithms to investigate the drivers of employee turnover at a large technology company. We evaluate the performance of the models, and use visual tools to interpret the patterns revealed. These patterns can be useful in understanding turnover, but we caution not to confuse correlation with causation. These methods should be viewed as “exploratory” and not conclusive proof of relationships in the data. Our guidance can be helpful for managers evaluating analysis conducted by data scientists in their organizations.

Suggested Citation

  • Prithwiraj Choudhury & Ryan T. Allen & Michael G. Endres, 2021. "Machine learning for pattern discovery in management research," Strategic Management Journal, Wiley Blackwell, vol. 42(1), pages 30-57, January.
  • Handle: RePEc:bla:stratm:v:42:y:2021:i:1:p:30-57
    DOI: 10.1002/smj.3215
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/smj.3215
    Download Restriction: no

    File URL: https://libkey.io/10.1002/smj.3215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    2. Daniel P. Gross, 2020. "Creativity Under Fire: The Effects of Competition on Creative Production," The Review of Economics and Statistics, MIT Press, vol. 102(3), pages 583-599, July.
    3. Benjamin A. Campbell & Martin Ganco & April M. Franco & Rajshree Agarwal, 2012. "Who leaves, where to, and why worry? employee mobility, entrepreneurship and effects on source firm performance," Strategic Management Journal, Wiley Blackwell, vol. 33(1), pages 65-87, January.
    4. Jovanovic, Boyan, 1979. "Job Matching and the Theory of Turnover," Journal of Political Economy, University of Chicago Press, vol. 87(5), pages 972-990, October.
    5. Jeffrey L. Furman & Florenta Teodoridis, 2020. "Automation, Research Technology, and Researchers’ Trajectories: Evidence from Computer Science and Electrical Engineering," Organization Science, INFORMS, vol. 31(2), pages 330-354, March.
    6. Prithwiraj Choudhury & Evan Starr & Rajshree Agarwal, 2020. "Machine learning and human capital complementarities: Experimental evidence on bias mitigation," Strategic Management Journal, Wiley Blackwell, vol. 41(8), pages 1381-1411, August.
    7. Athey, Susan & Imbens, Guido W., 2015. "Machine Learning for Estimating Heterogeneous Causal Effects," Research Papers 3350, Stanford University, Graduate School of Business.
    8. Ron Tidhar & Kathleen M. Eisenhardt, 2020. "Get rich or die trying… finding revenue model fit using machine learning and multiple cases," Strategic Management Journal, Wiley Blackwell, vol. 41(7), pages 1245-1273, July.
    9. David H. Autor, 2015. "Why Are There Still So Many Jobs? The History and Future of Workplace Automation," Journal of Economic Perspectives, American Economic Association, vol. 29(3), pages 3-30, Summer.
    10. Prithwiraj Choudhury & Dan Wang & Natalie A. Carlson & Tarun Khanna, 2019. "Machine learning approaches to facial and text analysis: Discovering CEO oral communication styles," Strategic Management Journal, Wiley Blackwell, vol. 40(11), pages 1705-1732, November.
    11. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carl-Christian Groh, 2024. "Big Data and Inequality," CRC TR 224 Discussion Paper Series crctr224_2024_555, University of Bonn and University of Mannheim, Germany.
    2. Zhang, Jianhong & van Witteloostuijn, Arjen & Zhou, Chaohong & Zhou, Shengyang, 2024. "Cross-border acquisition completion by emerging market MNEs revisited: Inductive evidence from a machine learning analysis," Journal of World Business, Elsevier, vol. 59(2).
    3. Zaman, Rashid, 2024. "When corporate culture matters: The case of stakeholder violations," The British Accounting Review, Elsevier, vol. 56(1).
    4. Joseph Raffiee & Daniel Fehder & Florenta Teodoridis, 2022. "Revealing the revealed preferences of public firm CEOs and top executives: A new database from credit card spending," Strategic Management Journal, Wiley Blackwell, vol. 43(10), pages 2042-2065, October.
    5. Bagherzadeh, Mehdi & Ghaderi, Mohammad & Fernandez, Anne-Sophie, 2022. "Coopetition for innovation - the more, the better? An empirical study based on preference disaggregation analysis," European Journal of Operational Research, Elsevier, vol. 297(2), pages 695-708.
    6. Benjamin L. Hallen & Susan L. Cohen & Sung Ho Park, 2023. "Are seed accelerators status springboards for startups? Or sand traps?," Strategic Management Journal, Wiley Blackwell, vol. 44(8), pages 2060-2096, August.
    7. Graham, Byron & Bonner, Karen, 2024. "The role of institutions in early-stage entrepreneurship: An explainable artificial intelligence approach," Journal of Business Research, Elsevier, vol. 175(C).
    8. Schade, Philipp & Schuhmacher, Monika C., 2023. "Predicting entrepreneurial activity using machine learning," Journal of Business Venturing Insights, Elsevier, vol. 19(C).
    9. Kinkel, Steffen & Baumgartner, Marco & Cherubini, Enrica, 2022. "Prerequisites for the adoption of AI technologies in manufacturing – Evidence from a worldwide sample of manufacturing companies," Technovation, Elsevier, vol. 110(C).
    10. Islam, Towhidul & Meade, Nigel & Carson, Richard T. & Louviere, Jordan J. & Wang, Juan, 2022. "The usefulness of socio-demographic variables in predicting purchase decisions: Evidence from machine learning procedures," Journal of Business Research, Elsevier, vol. 151(C), pages 324-338.
    11. Dahlander, Linus & Beretta, Michela & Thomas, Arne & Kazemi, Shahab & Fenger, Morten H.J. & Frederiksen, Lars, 2023. "Weeding out or picking winners in open innovation? Factors driving multi-stage crowd selection on LEGO ideas," Research Policy, Elsevier, vol. 52(10).
    12. Bas Bosma & Arjen Witteloostuijn, 2024. "Machine learning in international business," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 55(6), pages 676-702, August.
    13. Stefano Cabras & J. D. Tena, 2023. "Implicit institutional incentives and individual decisions: Causal inference with deep learning models," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(6), pages 3739-3754, September.
    14. Constance E. Helfat & Aseem Kaul & David J. Ketchen & Jay B. Barney & Olivier Chatain & Harbir Singh, 2023. "Renewing the resource‐based view: New contexts, new concepts, and new methods," Strategic Management Journal, Wiley Blackwell, vol. 44(6), pages 1357-1390, June.
    15. Yuanyang Teng & Yicun Li & Xiaobo Wu, 2024. "Exploring the mechanism of path-creating strategy for latecomers: a combined approach of econometrics and causal machine learning," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-18, December.
    16. Majid Majzoubi & Eric Yanfei Zhao, 2023. "Going beyond optimal distinctiveness: Strategic positioning for gaining an audience composition premium," Strategic Management Journal, Wiley Blackwell, vol. 44(3), pages 737-777, March.
    17. Prothit Sen & Phanish Puranam, 2022. "Do Alliance portfolios encourage or impede new business practice adoption? Theory and evidence from the private equity industry," Strategic Management Journal, Wiley Blackwell, vol. 43(11), pages 2279-2312, November.
    18. Liu, Feng & Wang, Rongping & Fang, Mingjie, 2024. "Mapping green innovation with machine learning: Evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    19. Milan Miric & Nan Jia & Kenneth G. Huang, 2023. "Using supervised machine learning for large‐scale classification in management research: The case for identifying artificial intelligence patents," Strategic Management Journal, Wiley Blackwell, vol. 44(2), pages 491-519, February.
    20. Joseph S. Harrison & Matthew A. Josefy & Matias Kalm & Ryan Krause, 2023. "Using supervised machine learning to scale human‐coded data: A method and dataset in the board leadership context," Strategic Management Journal, Wiley Blackwell, vol. 44(7), pages 1780-1802, July.
    21. Daniel Musafiri Balungu & Avinash Kumar, 2024. "Forecasting The Economic Growth of Sverdlovsk Region: A Comparative Analysis of Machine Learning, Linear Regression and Autoregressive Models," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 23(3), pages 674-695.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milan Miric & Nan Jia & Kenneth G. Huang, 2023. "Using supervised machine learning for large‐scale classification in management research: The case for identifying artificial intelligence patents," Strategic Management Journal, Wiley Blackwell, vol. 44(2), pages 491-519, February.
    2. Majid Majzoubi & Eric Yanfei Zhao, 2023. "Going beyond optimal distinctiveness: Strategic positioning for gaining an audience composition premium," Strategic Management Journal, Wiley Blackwell, vol. 44(3), pages 737-777, March.
    3. Lu, Qinli & Chesbrough, Henry, 2022. "Measuring open innovation practices through topic modelling: Revisiting their impact on firm financial performance," Technovation, Elsevier, vol. 114(C).
    4. Constance E. Helfat & Aseem Kaul & David J. Ketchen & Jay B. Barney & Olivier Chatain & Harbir Singh, 2023. "Renewing the resource‐based view: New contexts, new concepts, and new methods," Strategic Management Journal, Wiley Blackwell, vol. 44(6), pages 1357-1390, June.
    5. Prothit Sen & Phanish Puranam, 2022. "Do Alliance portfolios encourage or impede new business practice adoption? Theory and evidence from the private equity industry," Strategic Management Journal, Wiley Blackwell, vol. 43(11), pages 2279-2312, November.
    6. Boeker, Warren & Howard, Michael D. & Basu, Sandip & Sahaym, Arvin, 2021. "Interpersonal relationships, digital technologies, and innovation in entrepreneurial ventures," Journal of Business Research, Elsevier, vol. 125(C), pages 495-507.
    7. Yuchen Zhang & Wei Yang, 2022. "Breakthrough invention and problem complexity: Evidence from a quasi‐experiment," Strategic Management Journal, Wiley Blackwell, vol. 43(12), pages 2510-2544, December.
    8. Christoph Riedl & Eric Bogert, 2024. "Effects of AI Feedback on Learning, the Skill Gap, and Intellectual Diversity," Papers 2409.18660, arXiv.org.
    9. Zsolt Csáfordi & László Lőrincz & Balázs Lengyel & Károly Miklós Kiss, 2020. "Productivity spillovers through labor flows: productivity gap, multinational experience and industry relatedness," The Journal of Technology Transfer, Springer, vol. 45(1), pages 86-121, February.
    10. Montobbio, Fabio & Staccioli, Jacopo & Virgillito, Maria Enrica & Vivarelli, Marco, 2022. "Robots and the origin of their labour-saving impact," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    11. Pagano, Marco & Picariello, Luca, 2023. "Talent discovery, layoff risk and unemployment insurance," European Economic Review, Elsevier, vol. 154(C).
    12. Tania Babina & Paige Ouimet & Rebecca Zarutskie, 2017. "Going Entrepreneurial? IPOs and New Firm Creation," Working Papers 17-18, Center for Economic Studies, U.S. Census Bureau.
    13. Briana Sell Stenard & Henry Sauermann, 2016. "Educational Mismatch, Work Outcomes, and Entry Into Entrepreneurship," Organization Science, INFORMS, vol. 27(4), pages 801-824, August.
    14. Xiao, Jing & Lindholm Dahlstrand, Åsa, 2021. "Skill-biased acquisitions? Human capital and target employee mobility in small technology firms," Papers in Innovation Studies 2021/12, Lund University, CIRCLE - Centre for Innovation Research.
    15. Bryan, Kevin A. & Ozcan, Yasin & Sampat, Bhaven, 2020. "In-text patent citations: A user's guide," Research Policy, Elsevier, vol. 49(4).
    16. Laura Toschi & Elisa Ughetto & Andrea Fronzetti Colladon, 2023. "The identity of social impact venture capitalists: exploring social linguistic positioning and linguistic distinctiveness through text mining," Small Business Economics, Springer, vol. 60(3), pages 1249-1280, March.
    17. Edward I. Altman & Marco Balzano & Alessandro Giannozzi & Stjepan Srhoj, 2023. "Revisiting SME default predictors: The Omega Score," Journal of Small Business Management, Taylor & Francis Journals, vol. 61(6), pages 2383-2417, November.
    18. Jens Prüfer & Patricia Prüfer, 2020. "Data science for entrepreneurship research: studying demand dynamics for entrepreneurial skills in the Netherlands," Small Business Economics, Springer, vol. 55(3), pages 651-672, October.
    19. Aaron K. Chatterji & Rui J. P. de Figueiredo & Evan Rawley, 2016. "Learning on the Job? Employee Mobility in the Asset Management Industry," Management Science, INFORMS, vol. 62(10), pages 2804-2819, October.
    20. Bas Bosma & Arjen Witteloostuijn, 2024. "Machine learning in international business," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 55(6), pages 676-702, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stratm:v:42:y:2021:i:1:p:30-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/0143-2095 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.