IDEAS home Printed from https://ideas.repec.org/a/ags/ndjtrf/206873.html
   My bibliography  Save this article

The Influence of Geometry on Operational Performance of Signal-Controlled Junctions

Author

Listed:
  • Sermpis, Dimitris

Abstract

The aim of this study is to investigate the influence of geometry on the performance of signalcontrolled road junctions under fixed-time and system D traffic responsive signal control by using 16 experimental scenarios with several different traffic and geometric characteristics. In the estimated log-linear models for delay per unit of time, the principal effects of lane width and turning radii were as expected. The effect on delay of the interaction between lane width and turning radii was found to be of substantial importance at light traffic flow, while the interaction between turning radii and signal control was found to play a significant role at medium traffic flow.

Suggested Citation

  • Sermpis, Dimitris, 2007. "The Influence of Geometry on Operational Performance of Signal-Controlled Junctions," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 46(1).
  • Handle: RePEc:ags:ndjtrf:206873
    DOI: 10.22004/ag.econ.206873
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/206873/files/966-1076-1-PB.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.206873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gipps, P. G., 1986. "A model for the structure of lane-changing decisions," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 403-414, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    2. Bonsall, Peter & Liu, Ronghui & Young, William, 2005. "Modelling safety-related driving behaviour--impact of parameter values," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 425-444, June.
    3. Hiroshi Tatsumi & Masaya Kawano & Tetsunobu Yoshitake & Satoshi Toi & Yoshitaka Kajita, 2004. "Evaluation of City Planning Road Development Measures by Microscopic Traffic Simulation," ERSA conference papers ersa04p221, European Regional Science Association.
    4. Mingmin Guo & Zheng Wu & Huibing Zhu, 2018. "Empirical study of lane-changing behavior on three Chinese freeways," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-22, January.
    5. He, Jia & He, Zhengbing & Fan, Bo & Chen, Yanyan, 2020. "Optimal location of lane-changing warning point in a two-lane road considering different traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Ziakopoulos, Apostolos & Oikonomou, Maria G. & Vlahogianni, Eleni I. & Yannis, George, 2021. "Quantifying the implementation impacts of a point to point automated urban shuttle service in a large-scale network," Transport Policy, Elsevier, vol. 114(C), pages 233-244.
    7. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    8. Espadaler-Clapés, Jasso & Barmpounakis, Emmanouil & Geroliminis, Nikolas, 2023. "Empirical investigation of lane usage, lane changing and lane choice phenomena in a multimodal urban arterial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    9. Sun, Baofeng & Ma, Guodong & Song, Jia & Cheng, Zeyang & Wang, Wei, 2023. "Driving safety field modeling focused on heterogeneous traffic flows and cooperative control strategy in highway merging zone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    10. Liu, Hongjie & Yuan, Tengfei & Zeng, Xiaoqing & Guo, KaiYi & Wang, Yizeng & Mo, Yanghui & Xu, Hongzhe, 2024. "Eco-driving strategy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    11. Coifman, Benjamin, 2006. "Extracting More Information from the Existing Freeway Traffic Monitoring Infrastructure," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt34n479gz, Institute of Transportation Studies, UC Berkeley.
    12. Kanagaraj, Venkatesan & Treiber, Martin, 2018. "Self-driven particle model for mixed traffic and other disordered flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1-11.
    13. Jin, Wen-Long, 2012. "A kinematic wave theory of multi-commodity network traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1000-1022.
    14. Ang Ji & David Levinson, 2021. "Estimating the Social Gap with a Game Theory Model of Lane Changing," Working Papers 2021-02, University of Minnesota: Nexus Research Group.
    15. Taghreed Alghamdi & Sifatul Mostafi & Ghadeer Abdelkader & Khalid Elgazzar, 2022. "A Comparative Study on Traffic Modeling Techniques for Predicting and Simulating Traffic Behavior," Future Internet, MDPI, vol. 14(10), pages 1-21, October.
    16. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    17. Bowen Gong & Zhipeng Xu & Ruixin Wei & Tao Wang & Ciyun Lin & Peng Gao, 2023. "Reinforcement Learning-Based Lane Change Decision for CAVs in Mixed Traffic Flow under Low Visibility Conditions," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    18. Ma, Yanli & Lv, Zhiliang & Zhang, Peng & Chan, Ching-Yao, 2021. "Impact of lane changing on adjacent vehicles considering multi-vehicle interaction in mixed traffic flow: A velocity estimating model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    19. Melo, Sandra & Macedo, Joaquim & Baptista, Patrícia, 2019. "Capacity-sharing in logistics solutions: A new pathway towards sustainability," Transport Policy, Elsevier, vol. 73(C), pages 143-151.
    20. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:ndjtrf:206873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.trforum.org/journal/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.