IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v566y2021ics037843712030875x.html
   My bibliography  Save this article

Impact of lane changing on adjacent vehicles considering multi-vehicle interaction in mixed traffic flow: A velocity estimating model

Author

Listed:
  • Ma, Yanli
  • Lv, Zhiliang
  • Zhang, Peng
  • Chan, Ching-Yao

Abstract

To quantitatively analyse the influence of lane changing vehicles on the speed of adjacent vehicles during the lane changing process, this paper designed a fleet lane changing experiment based on P3-DT Beidou high-precision positioning and direction finding receiver. The concept of cellular vehicle neighbourhood is proposed to quantitatively describe the influence of vehicle spacing on vehicle speed. A study into the speed changing model of adjacent vehicles during lane changing is performed. A simulation program is developed, and simulation results are compared with the measured data. The goodness of fit of the velocity change extent of adjacent vehicles in the target lane is over 80%, which validates the velocity estimating model. This model can provide a theoretical basis for research and development in the interactive simulation of multiple vehicles and automatic driving technology in mixed traffic flow.

Suggested Citation

  • Ma, Yanli & Lv, Zhiliang & Zhang, Peng & Chan, Ching-Yao, 2021. "Impact of lane changing on adjacent vehicles considering multi-vehicle interaction in mixed traffic flow: A velocity estimating model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
  • Handle: RePEc:eee:phsmap:v:566:y:2021:i:c:s037843712030875x
    DOI: 10.1016/j.physa.2020.125577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712030875X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Yanli & Zhang, Peng & Hu, Baoyu, 2019. "Active lane-changing model of vehicle in B-type weaving region based on potential energy field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Gipps, P. G., 1986. "A model for the structure of lane-changing decisions," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 403-414, October.
    3. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kou, Yukang & Ma, Changxi, 2023. "Dual-objective intelligent vehicle lane changing trajectory planning based on polynomial optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Linheng & Gan, Jing & Zhou, Kun & Qu, Xu & Ran, Bin, 2020. "A novel lane-changing model of connected and automated vehicles: Using the safety potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    2. Espadaler-Clapés, Jasso & Barmpounakis, Emmanouil & Geroliminis, Nikolas, 2023. "Empirical investigation of lane usage, lane changing and lane choice phenomena in a multimodal urban arterial," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    3. Bowen Gong & Zhipeng Xu & Ruixin Wei & Tao Wang & Ciyun Lin & Peng Gao, 2023. "Reinforcement Learning-Based Lane Change Decision for CAVs in Mixed Traffic Flow under Low Visibility Conditions," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    4. Khelfa, Basma & Ba, Ibrahima & Tordeux, Antoine, 2023. "Predicting highway lane-changing maneuvers: A benchmark analysis of machine and ensemble learning algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    5. Ma, Changxi & Li, Dong, 2023. "A review of vehicle lane change research," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    6. Sheikh, Muhammad Sameer & Wang, Ji & Regan, Amelia, 2021. "A game theory-based controller approach for identifying incidents caused by aberrant lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    7. Jiang, Yangsheng & Tan, Li & Xiao, Guosheng & Wu, Yunxia & Yao, Zhihong, 2024. "Platoon-aware cooperative lane-changing strategy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    8. Shanchuan Yu & Yu Chen & Lang Song & Zhaoze Xuan & Yi Li, 2023. "Modelling and Mitigating Secondary Crash Risk for Serial Tunnels on Freeway via Lighting-Related Microscopic Traffic Model with Inter-Lane Dependency," IJERPH, MDPI, vol. 20(4), pages 1-29, February.
    9. Li, Gen & Zhao, Le & Tang, Wenyun & Wu, Lan & Ren, Jiaolong, 2023. "Modeling and analysis of mandatory lane-changing behavior considering heterogeneity in means and variances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    10. Ji Ang & David Levinson, 2020. "A Review of Game Theory Models of Lane Changing," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    11. Mehr, Negar & Li, Ruolin & Horowitz, Roberto, 2021. "A game theoretic macroscopic model of lane choices at traffic diverges with applications to mixed–autonomy networks," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 45-59.
    12. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    13. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    14. Zhufei Huang & Zihan Zhang & Haijian Li & Lingqiao Qin & Jian Rong, 2019. "Determining Appropriate Lane-Changing Spacing for Off-Ramp Areas of Urban Expressways," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    15. Chen, Tianyi & Shi, Xiupeng & Wong, Yiik Diew, 2021. "A lane-changing risk profile analysis method based on time-series clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    16. Bonsall, Peter & Liu, Ronghui & Young, William, 2005. "Modelling safety-related driving behaviour--impact of parameter values," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(5), pages 425-444, June.
    17. Hiroshi Tatsumi & Masaya Kawano & Tetsunobu Yoshitake & Satoshi Toi & Yoshitaka Kajita, 2004. "Evaluation of City Planning Road Development Measures by Microscopic Traffic Simulation," ERSA conference papers ersa04p221, European Regional Science Association.
    18. Mingmin Guo & Zheng Wu & Huibing Zhu, 2018. "Empirical study of lane-changing behavior on three Chinese freeways," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-22, January.
    19. Wang, Lichao & Yang, Min & Li, Ye & Hou, Yiqi, 2022. "A model of lane-changing intention induced by deceleration frequency in an automatic driving environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    20. Yuning Wang & Shuocheng Yang & Jinhao Li & Shaobing Xu & Jianqiang Wang, 2023. "An Emergency Driving Intervention System Designed for Driver Disability Scenarios Based on Emergency Risk Field," IJERPH, MDPI, vol. 20(3), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:566:y:2021:i:c:s037843712030875x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.