IDEAS home Printed from https://ideas.repec.org/a/ags/jlaare/30870.html
   My bibliography  Save this article

The Adoption And Diffusion Of Level Fields And Basins

Author

Listed:
  • Anderson, David P.
  • Wilson, Paul N.
  • Thompson, Gary D.

Abstract

Strategic investments in agriculture often are lumpy and irreversible, with significant impacts on operating and fixed costs. Leveling cotton fields to zero slope in central Arizona is a strategic decision made by relatively younger farmers who are farming fine-textured soils in irrigation districts with higher expected water costs. The diffusion of the technology across the region between 1968-89 appears to be both a function of institutional changes (e.g., the Groundwater Management Act of 1980, the Central Arizona Project) and the long-run expected price changes induced by these new policies.

Suggested Citation

  • Anderson, David P. & Wilson, Paul N. & Thompson, Gary D., 1999. "The Adoption And Diffusion Of Level Fields And Basins," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 24(1), pages 1-18, July.
  • Handle: RePEc:ags:jlaare:30870
    DOI: 10.22004/ag.econ.30870
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/30870/files/24010186.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.30870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dinar, Ariel & Yaron, Dan, 1990. "Influence Of Quality And Scarcity Of Inputs On The Adoption Of Modern Irrigation Technologies," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(2), pages 1-10, December.
    2. Linda K. Lee & William H. Stewart, 1983. "Landownership and the Adoption of Minimum Tillage," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(2), pages 256-264.
    3. David Zilberman & Doug Parker, 1996. "Explaining Irrigation Technology Choices: A Microparameter Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1064-1072.
    4. Green, Gareth P. & Sunding, David L., 1997. "Land Allocation, Soil Quality, And The Demand For Irrigation Technology," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 22(2), pages 1-9, December.
    5. Pindyck, Robert S, 1988. "Irreversible Investment, Capacity Choice, and the Value of the Firm," American Economic Review, American Economic Association, vol. 78(5), pages 969-985, December.
    6. Feder, Gershon, 1980. "Farm Size, Risk Aversion and the Adoption of New Technology under Uncertainty," Oxford Economic Papers, Oxford University Press, vol. 32(2), pages 263-283, July.
    7. Daniel S. Putler & David Zilberman, 1988. "Computer Use in Agriculture: Evidence from Tulare County, California," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 70(4), pages 790-802.
    8. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    9. Negri, Donald H. & Brooks, Douglas H., 1990. "Determinants Of Irrigation Technology Choice," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(2), pages 1-12, December.
    10. Wilson, Paul & Ayer, Harry & Snider, Gary, 1984. "Drip Irrigation For Cotton: Implications for Farm Profits," Agricultural Economic Reports 307960, United States Department of Agriculture, Economic Research Service.
    11. Erik Lichtenberg, 1989. "Land Quality, Irrigation Development, and Cropping Patterns in the Northern High Plains," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(1), pages 187-194.
    12. Wilson, Paul N., 1997. "Economic Discovery In Federally Supported Irrigation Districts: A Tribute To William E. Martin And Friends," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 22(1), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gillespie, Jeffrey M. & Davis, Christopher G. & Rahelizatovo, Noro C., 2004. "Factors Influencing the Adoption of Breeding Technologies in U.S. Hog Production," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 36(1), pages 1-13, April.
    2. Rossi, Fabiana Ribeiro & Filho, Hildo Meirelles de Souza & Miranda, Bruno Varella & Carrer, Marcelo José, 2020. "The role of contracts in the adoption of irrigation by Brazilian orange growers," Agricultural Water Management, Elsevier, vol. 233(C).
    3. Bett, Charles, 2004. "Farm level adoption decisions of soil and water management technologies in semi-arid Eastern Kenya," 2004 Conference (48th), February 11-13, 2004, Melbourne, Australia 58369, Australian Agricultural and Resource Economics Society.
    4. Rejesus, Roderick M. & Palis, Florencia G. & Rodriguez, Divina Gracia P. & Lampayan, Ruben M. & Bouman, Bas A.M., 2011. "Impact of the alternate wetting and drying (AWD) water-saving irrigation technique: Evidence from rice producers in the Philippines," Food Policy, Elsevier, vol. 36(2), pages 280-288, April.
    5. Friedrich Rübcke von Veltheim & Heinke Heise, 2020. "The AgTech Startup Perspective to Farmers Ex Ante Acceptance Process of Autonomous Field Robots," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    6. Srinivas, Tavva & Nedunchezhiyan, M., 2020. "The nexus between adoption and diffusion of production technologies with yield: Evidence from sweet potato farmers in India," Technology in Society, Elsevier, vol. 60(C).
    7. Adams, Kerr & Kovacs, Kent, 2018. "Influence of Peer Networks on the Use of Surface Water Systems," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266494, Southern Agricultural Economics Association.
    8. Bilby, David B. & Wilson, Paul N., 2013. "Regulatory Capture? Arizona’s BMP Water Conservation Program," Western Economics Forum, Western Agricultural Economics Association, vol. 12(2), pages 1-9.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kidane Mariam Gebregziabher, 2014. "Agricultural Extension Service and Input Application Intensity: Evidence from Ethiopia," Journal of Economics and Behavioral Studies, AMH International, vol. 6(9), pages 735-747.
    2. Lichtenberg, Erik, 2013. "Optimal Investment in Precision Irrigation Systems: A Dynamic Intraseasonal Approach," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149920, Agricultural and Applied Economics Association.
    3. Pokhrel, Bijay & Krishna, Paudel & Eduardo, Segarra, 2016. "Factors Affecting the Choice, Intensity, and Allocation of Irrigation Technologies by U.S. Cotton Farmers," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 230199, Southern Agricultural Economics Association.
    4. Moreno, Georgina & Sunding, David L., 2003. "Simultaneous Estimation Of Technology Adoption And Land Allocation," 2003 Annual meeting, July 27-30, Montreal, Canada 22134, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. César Salazar & John Rand, 2016. "Production risk and adoption of irrigation technology: evidence from small-scale farmers in Chile," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 25(1), pages 1-37, December.
    6. Lichtenberg, Erik & Majsztrik, John & Saavoss, Monica, 2014. "Willingness to Pay for Sensor-Controlled Irrigation," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 168211, Agricultural and Applied Economics Association.
    7. Rossi, Fabiana Ribeiro & Filho, Hildo Meirelles de Souza & Miranda, Bruno Varella & Carrer, Marcelo José, 2020. "The role of contracts in the adoption of irrigation by Brazilian orange growers," Agricultural Water Management, Elsevier, vol. 233(C).
    8. Alcon, Francisco & Tapsuwan, Sorada & Martínez-Paz, José M. & Brouwer, Roy & de Miguel, María D., 2014. "Forecasting deficit irrigation adoption using a mixed stakeholder assessment methodology," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 183-193.
    9. Madhu Khanna, 2001. "Sequential Adoption of Site-Specific Technologies and its Implications for Nitrogen Productivity: A Double Selectivity Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(1), pages 35-51.
    10. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    11. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    12. Ariel Dinar & Mark Campbell & David Zilberman, 1992. "Adoption of improved irrigation and drainage reduction technologies under limiting environmental conditions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(4), pages 373-398, July.
    13. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    14. Olen, Beau & Wu, JunJie & Langpap, Christian, 2012. "Crop-specific Irrigation Choices for Major Crops on the West Coast: Water Scarcity and Climatic Determinants," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124843, Agricultural and Applied Economics Association.
    15. Jian Shi & JunJie Wu & Beau Olen, 2022. "Impacts of climate and weather on irrigation technology adoption and agricultural water use in the U.S. pacific northwest," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 387-406, May.
    16. Schuck, Eric C. & Frasier, W. Marshall & Ebel, Robert & Houk, Eric & Green, Gareth, 2011. "Retirement and Salinity Effects on Irrigation Technology Choices," Western Economics Forum, Western Agricultural Economics Association, vol. 10(1), pages 1-13.
    17. Ahsanuzzaman, Ahsanuzzaman, 2015. "Duration Analysis of Technology Adoption in Bangladeshi Agriculture," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 200406, Agricultural and Applied Economics Association.
    18. Alcon, Francisco & De Miguel, María Dolores & Burton, Michael P., 2008. "Adopción de tecnología de distribución y control del agua en las Comunidades de Regantes de la Región de Murcia," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 8(01), pages 1-19.
    19. Weaver, Robert D. & Rauniyar, Ganesh, 1993. "The Economics of Adoption of Environmentally Beneficial Agricultural Practices: (EBAPs): An Analytical Review of Evidence," Staff Paper Series 256847, Pennsylvania State University, Department of Agricultural Economics and Rural Sociology.
    20. Gautam, Tej K. & Bhatta, Dependra, 2017. "Determinants Of Irrigation Technology Adoptions And Production Efficiency In Nepal’S Agricultural Sector," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252856, Southern Agricultural Economics Association.

    More about this item

    Keywords

    Crop Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jlaare:30870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/waeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.