IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v53y2022i3p387-406.html
   My bibliography  Save this article

Impacts of climate and weather on irrigation technology adoption and agricultural water use in the U.S. pacific northwest

Author

Listed:
  • Jian Shi
  • JunJie Wu
  • Beau Olen

Abstract

In this article, we model long‐run responses to climate expectations that are predetermined before the growing season and short‐run responses to weather realizations during the growing season. The model is applied to a climatically diverse region, the U.S. Pacific Northwest, and the most comprehensive dataset on irrigation in the United States to estimate the impact of extreme weather on irrigation technology adoption and agricultural water use. Impacts on agricultural water use were driven more by adjustments to irrigated acreage (extensive margin effects) than by adjustments to the water application rate (intensive margin effects). The model captures the two mechanisms for irrigation to mitigate freeze damage to crops: wetting the soil (heat retention) and over‐head sprinkler irrigation (latent heat). Realized late spring freeze caused water use for orchard/vineyard to increase by 3%, but this represents less than a 1% increase in total agricultural water use. Expected spring freeze variability encouraged adoption of sprinkler irrigation technology for some crops.

Suggested Citation

  • Jian Shi & JunJie Wu & Beau Olen, 2022. "Impacts of climate and weather on irrigation technology adoption and agricultural water use in the U.S. pacific northwest," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 387-406, May.
  • Handle: RePEc:bla:agecon:v:53:y:2022:i:3:p:387-406
    DOI: 10.1111/agec.12705
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/agec.12705
    Download Restriction: no

    File URL: https://libkey.io/10.1111/agec.12705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeff Connor & Kurt Schwabe & Darran King & David Kaczan & Mac Kirby, 2009. "Impacts of climate change on lower Murray irrigation ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 437-456, July.
    2. Schlenker, Wolfram & Hanemann, W Michael & Fisher, Anthony C, 2007. "Water Availability, Degree Days, and the Potential Impact of Climate Change on Irrigated Agriculture in California," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8q8309qn, Department of Agricultural & Resource Economics, UC Berkeley.
    3. Dale T. Manning & Christopher Goemans & Alexander Maas, 2017. "Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation," Land Economics, University of Wisconsin Press, vol. 93(4), pages 631-653.
    4. Man Li & Wenchao Xu & Tingju Zhu, 2019. "Agricultural Water Allocation under Uncertainty: Redistribution of Water Shortage Risk," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(1), pages 134-153.
    5. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    6. Gary D. Libecap, 2011. "Institutional Path Dependence in Climate Adaptation: Coman's "Some Unsettled Problems of Irrigation"," American Economic Review, American Economic Association, vol. 101(1), pages 64-80, February.
    7. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    8. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    9. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    10. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2012. "Groundwater pumping and spatial externalities in agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 16-30.
    11. Dinar, Ariel & Yaron, Dan, 1990. "Influence Of Quality And Scarcity Of Inputs On The Adoption Of Modern Irrigation Technologies," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(2), pages 1-10, December.
    12. Moore, Michael R. & Negri, Donald H., 1992. "A Multicrop Production Model Of Irrigated Agriculture, Applied To Water Allocation Policy Of The Bureau Of Reclamation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 17(1), pages 1-15, July.
    13. Janis M. Carey & David Zilberman, 2002. "A Model of Investment under Uncertainty: Modern Irrigation Technology and Emerging Markets in Water," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(1), pages 171-183.
    14. Michael R. Moore & Noel R. Gollehon & Marc B. Carey, 1994. "Multicrop Production Decisions in Western Irrigated Agriculture: The Role of Water Price," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(4), pages 859-874.
    15. Dinar, Ariel & Yaron, Dan, 1992. "Adoption and abandonment of irrigation technologies," Agricultural Economics, Blackwell, vol. 6(4), pages 315-332, April.
    16. Elena G. Irwin, 2002. "Interacting agents, spatial externalities and the evolution of residential land use patterns," Journal of Economic Geography, Oxford University Press, vol. 2(1), pages 31-54, January.
    17. Beau Olen & JunJie Wu & Christian Langpap, 2016. "Irrigation Decisions for Major West Coast Crops: Water Scarcity and Climatic Determinants," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(1), pages 254-275.
    18. Wozniak, Gregory D, 1993. "Joint Information Acquisition and New Technology Adoption: Late versus Early Adoption," The Review of Economics and Statistics, MIT Press, vol. 75(3), pages 438-445, August.
    19. Burness, H Stuart & Quirk, James P, 1979. "Appropriative Water Rights and the Efficient Allocation of Resources," American Economic Review, American Economic Association, vol. 69(1), pages 25-37, March.
    20. Michael R. Moore, 1999. "Estimating Irrigators' Ability to Pay for Reclamation Water," Land Economics, University of Wisconsin Press, vol. 75(4), pages 562-578.
    21. Ariel Dinar & Dan Yaron, 1992. "Adoption and abandonment of irrigation technologies," Agricultural Economics, International Association of Agricultural Economists, vol. 6(4), pages 315-332, April.
    22. Bigelow, Daniel & Borchers, Allison & Hubbs, Todd, 2016. "U.S. Farmland Ownership, Tenure, and Transfer," Economic Information Bulletin 262138, United States Department of Agriculture, Economic Research Service.
    23. Negri, Donald H. & Brooks, Douglas H., 1990. "Determinants Of Irrigation Technology Choice," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(2), pages 1-12, December.
    24. Daniel A. Brent, 2017. "The Value of Heterogeneous Property Rights and the Costs of Water Volatility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(1), pages 73-102.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Yang & Zilberman, David, 2014. "The Economics of Water Project Capacities and Conservation Technologies," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169820, Agricultural and Applied Economics Association.
    2. Xinde Ji & Kelly M. Cobourn, 2018. "The Economic Benefits of Irrigation Districts under Prior Appropriation Doctrine: An Econometric Analysis of Agricultural Land‐Allocation Decisions," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 66(3), pages 441-467, September.
    3. Ji, Xinde & Cobourn, Kelly M., 2017. "Water Availability, Land Allocation, and the Role of Irrigation Districts under Prior Appropriation Doctrine," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258377, Agricultural and Applied Economics Association.
    4. Dietrich Earnhart & Nathan P. Hendricks, 2023. "Adapting to water restrictions: Intensive versus extensive adaptation over time differentiated by water right seniority," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1458-1490, October.
    5. Xinde Ji & Kelly M. Cobourn, 2021. "Weather Fluctuations, Expectation Formation, and Short-Run Behavioral Responses to Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(1), pages 77-119, January.
    6. Gautam, Tej K. & Bhatta, Dependra, 2017. "Determinants Of Irrigation Technology Adoptions And Production Efficiency In Nepal’S Agricultural Sector," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252856, Southern Agricultural Economics Association.
    7. Kelly M. Cobourn & Xinde Ji & Siân Mooney & Neil F. Crescenti, 2022. "The effect of prior appropriation water rights on land‐allocation decisions in irrigated agriculture," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(3), pages 947-975, May.
    8. Xie, Yang & Zilberman, David, 2015. "Water Storage Capacities versus Water Use Efficiency: Substitutes or Complements?," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205439, Agricultural and Applied Economics Association.
    9. Cobourn, Kelly M. & Ji, Xinde & Mooney, Sian & Crescenti, Neil, 2017. "Water right seniority, economic efficiency and land allocation decisions," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258271, Agricultural and Applied Economics Association.
    10. Olen, Beau & Wu, JunJie & Langpap, Christian, 2012. "Crop-specific Irrigation Choices for Major Crops on the West Coast: Water Scarcity and Climatic Determinants," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124843, Agricultural and Applied Economics Association.
    11. Celine Nauges & Phoebe Koundouri & Vangelis Tzouvelekas, 2004. "Endogenous Technology Adoption Under Production Risk: Theory and Application to Irrigation Technology," Working Papers 0411, University of Crete, Department of Economics.
    12. Lionel Richefort & Jean-Louis Fusillier, 2010. "Imitation, rationalité et adoption de technologies d'irrigation améliorées à l'île de la Réunion," Economie & Prévision, La Documentation Française, vol. 0(2), pages 59-73.
    13. Daniel A. Brent, 2014. "The Value of Heterogeneous Property Rights and the Costs of Water Volatility," Monash Economics Working Papers 45-14, Monash University, Department of Economics.
    14. Ji, Xinde & Cobourn, Kelly M. & Weng, Weizhe, 2018. "The Effect of Climate Change on Irrigated Agriculture: Water-Temperature Interactions and Adaptation in the Western U.S," 2018 Annual Meeting, August 5-7, Washington, D.C. 274306, Agricultural and Applied Economics Association.
    15. Dinar, Ariel & Keck, Andrew, 1997. "Private irrigation investment in Colombia: effects of violence, macroeconomic policy, and environmental conditions," Agricultural Economics, Blackwell, vol. 16(1), pages 1-15, March.
    16. Li, Haoyang & Zhao, Jinhua, 2018. "What Drives (No) Adoption of New Irrigation Technologies: A Structural Dynamic Estimation Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274474, Agricultural and Applied Economics Association.
    17. Mendelsohn, Robert & Seo, Niggol, 2007. "Changing farm types and irrigation as an adaptation to climate change in Latin American agriculture," Policy Research Working Paper Series 4161, The World Bank.
    18. Shaikh M. S. U. Eskander & Edward B. Barbier, 2023. "Adaptation to Natural Disasters through the Agricultural Land Rental Market: Evidence from Bangladesh," Land Economics, University of Wisconsin Press, vol. 99(1), pages 141-160.
    19. Ariel Dinar & Mark Campbell & David Zilberman, 1992. "Adoption of improved irrigation and drainage reduction technologies under limiting environmental conditions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 2(4), pages 373-398, July.
    20. Dale T. Manning & Christopher Goemans & Alexander Maas, 2017. "Producer Responses to Surface Water Availability and Implications for Climate Change Adaptation," Land Economics, University of Wisconsin Press, vol. 93(4), pages 631-653.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:53:y:2022:i:3:p:387-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.