IDEAS home Printed from https://ideas.repec.org/p/ags/aaea03/22134.html
   My bibliography  Save this paper

Simultaneous Estimation Of Technology Adoption And Land Allocation

Author

Listed:
  • Moreno, Georgina
  • Sunding, David L.

Abstract

The paper considers the econometric modeling of technology adoption when crop choice is simultaneous. Bivariate probit is used to estimate a model of irrigation technology choice and land allocation using a unique field-level data set from California's Central Valley. Special attention is paid to the proper calculation of marginal effects in the bivariate probit model, which are often useful for policy purposes. Estimation results confirm that the choices of irrigation technology and land allocation are simultaneous. With regard to the influence of price incentives on agricultural water use, estimation results from the bivariate probit model indicate that the influence of water price on the adoption of precision irrigation technology is much larger than previously realized. A univariate model of technology choice that treats land allocation as exogenous underestimates the effect of water price on the adoption of precision technology by over 40 percent.

Suggested Citation

  • Moreno, Georgina & Sunding, David L., 2003. "Simultaneous Estimation Of Technology Adoption And Land Allocation," 2003 Annual meeting, July 27-30, Montreal, Canada 22134, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea03:22134
    DOI: 10.22004/ag.econ.22134
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/22134/files/sp03mo01.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.22134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William H. Greene, 1998. "Gender Economics Courses in Liberal Arts Colleges: Further Results," The Journal of Economic Education, Taylor & Francis Journals, vol. 29(4), pages 291-300, January.
    2. David Zilberman & Doug Parker, 1996. "Explaining Irrigation Technology Choices: A Microparameter Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(4), pages 1064-1072.
    3. Green, Gareth P. & Sunding, David L., 1997. "Land Allocation, Soil Quality, And The Demand For Irrigation Technology," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 22(2), pages 1-9, December.
    4. Moore, Michael R. & Negri, Donald H., 1992. "A Multicrop Production Model Of Irrigated Agriculture, Applied To Water Allocation Policy Of The Bureau Of Reclamation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 17(1), pages 1-15, July.
    5. Margriet Caswell & David Zilberman, 1985. "The Choices of Irrigation Technologies in California," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 67(2), pages 224-234.
    6. Negri, Donald H. & Brooks, Douglas H., 1990. "Determinants Of Irrigation Technology Choice," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 15(2), pages 1-12, December.
    7. Margriet F. Caswell & David Zilberman, 1986. "The Effects of Well Depth and Land Quality on the Choice of Irrigation Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 798-811.
    8. Erik Lichtenberg, 1989. "Land Quality, Irrigation Development, and Cropping Patterns in the Northern High Plains," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(1), pages 187-194.
    9. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    10. Rivers, Douglas & Vuong, Quang H., 1988. "Limited information estimators and exogeneity tests for simultaneous probit models," Journal of Econometrics, Elsevier, vol. 39(3), pages 347-366, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mary Thuo & Alexandra Bell & Boris Bravo-Ureta & Michée Lachaud & David Okello & Evelyn Okoko & Nelson Kidula & Carl Deom & Naveen Puppala, 2014. "Effects of social network factors on information acquisition and adoption of improved groundnut varieties: the case of Uganda and Kenya," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 31(3), pages 339-353, September.
    2. Goshu, Degye & Kassa, Belay & Ketema, Mengistu, 2023. "Is food security enhanced by agricultural technologies in rural Ethiopia?," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 18(1), April.
    3. Boris Bravo & Horacio Cocchi & Daniel Solís, 2006. "Adoption of Soil Conservation Technologies in El Salvador: A cross-Section and Over-Time Analysis," OVE Working Papers 1806, Inter-American Development Bank, Office of Evaluation and Oversight (OVE).
    4. Moreno, Georgina, 2005. "Intrafirm Effects on Water Conservation in Agriculture," 2005 Annual meeting, July 24-27, Providence, RI 19166, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Cocchi, Horacio & Bravo-Ureta, Boris E. & Quiroga, Ricardo E., 2004. "Farm Benefits And Natural Resource Projects In Honduras And El Salvador," 2004 Annual meeting, August 1-4, Denver, CO 20328, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lichtenberg, Erik, 2013. "Optimal Investment in Precision Irrigation Systems: A Dynamic Intraseasonal Approach," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149920, Agricultural and Applied Economics Association.
    2. Alcon, Francisco & Tapsuwan, Sorada & Martínez-Paz, José M. & Brouwer, Roy & de Miguel, María D., 2014. "Forecasting deficit irrigation adoption using a mixed stakeholder assessment methodology," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 183-193.
    3. George Frisvold & Charles Sanchez & Noel Gollehon & Sharon B. Megdal & Paul Brown, 2018. "Evaluating Gravity-Flow Irrigation with Lessons from Yuma, Arizona, USA," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    4. Pfeiffer, Lisa & Lin, C.-Y. Cynthia, 2014. "Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 189-208.
    5. Ben Groom & Phoebe Koundouri & Celine Nauges & Alban Thomas, 2003. "Irrigation water management under risk: An application to Cyprus," DEOS Working Papers 0306, Athens University of Economics and Business.
    6. Anderson, David P. & Wilson, Paul N. & Thompson, Gary D., 1999. "The Adoption And Diffusion Of Level Fields And Basins," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 24(1), pages 1-18, July.
    7. Moreno, Georgina & Sunding, David L., 2000. "Irrigation Technology Investment When The Price Of Water Is Stochastic," 2000 Annual meeting, July 30-August 2, Tampa, FL 21730, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. César Salazar & John Rand, 2016. "Production risk and adoption of irrigation technology: evidence from small-scale farmers in Chile," Latin American Economic Review, Springer;Centro de Investigaciòn y Docencia Económica (CIDE), vol. 25(1), pages 1-37, December.
    9. Karina Schoengold & David L. Sunding, 2014. "The impact of water price uncertainty on the adoption of precision irrigation systems," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 729-743, November.
    10. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    11. Carpentier, Alain & Letort, Elodie, 2009. "Modeling acreage decisions within the multinomial Logit framework," Working Papers 211011, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    12. Nicolas E. Quintana Ashwell & Jeffrey M. Peterson, 2016. "The Impact of Irrigation Capital Subsidies on Common-Pool Groundwater Use and Depletion: Results for Western Kansas," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 1-22, September.
    13. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    14. Green, Gareth P. & Sunding, David L., 1997. "Land Allocation, Soil Quality, And The Demand For Irrigation Technology," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 22(2), pages 1-9, December.
    15. Chieko Umetsu & Ujjayant Chakravorty, 1998. "Water conveyance, return flows and technology choice," Agricultural Economics, International Association of Agricultural Economists, vol. 19(1-2), pages 181-191, September.
    16. Olen, Beau & Wu, JunJie & Langpap, Christian, 2012. "Crop-specific Irrigation Choices for Major Crops on the West Coast: Water Scarcity and Climatic Determinants," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124843, Agricultural and Applied Economics Association.
    17. Jian Shi & JunJie Wu & Beau Olen, 2022. "Impacts of climate and weather on irrigation technology adoption and agricultural water use in the U.S. pacific northwest," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 387-406, May.
    18. Danso, G.K. & Jeffrey, S.R. & Dridi, C. & Veeman, T., 2021. "Modeling irrigation technology adoption and crop choices: Gains from water trading with farmer heterogeneity in Southern Alberta, Canada," Agricultural Water Management, Elsevier, vol. 253(C).
    19. Schuck, Eric C. & Frasier, W. Marshall & Ebel, Robert & Houk, Eric & Green, Gareth, 2011. "Retirement and Salinity Effects on Irrigation Technology Choices," Western Economics Forum, Western Agricultural Economics Association, vol. 10(1), pages 1-13.
    20. Celine Nauges & Phoebe Koundouri & Vangelis Tzouvelekas, 2004. "Endogenous Technology Adoption Under Production Risk: Theory and Application to Irrigation Technology," Working Papers 0411, University of Crete, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea03:22134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.