IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v217y2022ics0165176522002245.html
   My bibliography  Save this article

Dynamic spillover transmission in agricultural commodity markets: What has changed after the COVID-19 threat?

Author

Listed:
  • Just, Małgorzata
  • Echaust, Krzysztof

Abstract

This paper applies the dynamic Diebold–Yilmaz and Baruník–Křehlík spillover indices to document a closer integration between agricultural commodity markets in the period when markets rebounded after the COVID-19 threat to the Russia–Ukraine​ war. We also identified the record return spillover transmission among agricultural commodities during a time of conflict and the strongest transmitters are wheat, maize and barley. The findings emphasise an increasing uncertainty to the global food market.

Suggested Citation

  • Just, Małgorzata & Echaust, Krzysztof, 2022. "Dynamic spillover transmission in agricultural commodity markets: What has changed after the COVID-19 threat?," Economics Letters, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:ecolet:v:217:y:2022:i:c:s0165176522002245
    DOI: 10.1016/j.econlet.2022.110671
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176522002245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2022.110671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/11708 is not listed on IDEAS
    2. Cornelis Gardebroek & Manuel A. Hernandez & Miguel Robles, 2016. "Market interdependence and volatility transmission among major crops," Agricultural Economics, International Association of Agricultural Economists, vol. 47(2), pages 141-155, March.
    3. Śmiech, Sławomir & Papież, Monika & Shahzad, Syed Jawad Hussain, 2020. "Spillover among financial, industrial and consumer uncertainties. The case of EU member states," International Review of Financial Analysis, Elsevier, vol. 70(C).
    4. Ismail Olaleke Fasanya & Oluwatomisin Oyewole & Temitope Odudu, 2020. "Returns and volatility spillovers among cryptocurrency portfolios," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 17(2), pages 327-341, July.
    5. Cao, Yan & Cheng, Sheng, 2021. "Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices," Resources Policy, Elsevier, vol. 74(C).
    6. Zhu, Bo & Lin, Renda & Deng, Yuanyue & Chen, Pingshe & Chevallier, Julien, 2021. "Intersectoral systemic risk spillovers between energy and agriculture under the financial and COVID-19 crises," Economic Modelling, Elsevier, vol. 105(C).
    7. Julien Chevallier & Florian Ielpo, 2013. "Volatility spillovers in commodity markets," Applied Economics Letters, Taylor & Francis Journals, vol. 20(13), pages 1211-1227, September.
    8. Bernhard Brümmer & Olaf Korn & Kristina Schlüßler & Tinoush Jamali Jaghdani, 2016. "Volatility in Oilseeds and Vegetable Oils Markets: Drivers and Spillovers," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 685-705, September.
    9. Hung, Ngo Thai, 2021. "Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Resources Policy, Elsevier, vol. 73(C).
    10. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    11. Mišečka, Tomáš & Ciaian, Pavel & Rajčániová, Miroslava & Pokrivčák, Jan, 2019. "In search of attention in agricultural commodity markets," Economics Letters, Elsevier, vol. 184(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, You & Ren, Wenting & Wan, Jieru & Liu, Xiaoxue, 2023. "Time-frequency volatility connectedness between fossil energy and agricultural commodities: Comparing the COVID-19 pandemic with the Russia-Ukraine conflict," Finance Research Letters, Elsevier, vol. 55(PA).
    2. Papież, Monika & Rubaszek, Michał & Szafranek, Karol & Śmiech, Sławomir, 2022. "Are European natural gas markets connected? A time-varying spillovers analysis," Resources Policy, Elsevier, vol. 79(C).
    3. Kristína Hudecová & Miroslava Rajčániová, 2023. "The impact of geopolitical risk on agricultural commodity prices," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(4), pages 129-139.
    4. Abricha, Amal & Ben Amar, Amine & Bellalah, Makram, 2024. "Commodity futures markets under stress and stress-free periods: Further insights from a quantile connectedness approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 93(C), pages 229-246.
    5. Amar, Amine Ben & Goutte, Stéphane & Isleimeyyeh, Mohammad & Benkraiem, Ramzi, 2022. "Commodity markets dynamics: What do cross-commodities over different nearest-to-maturities tell us?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    6. Noureddine Benlagha & Wafa Abdelmalek, 2024. "Dynamic connectedness between energy and agricultural commodities: insights from the COVID-19 pandemic and Russia–Ukraine conflict," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 14(3), pages 781-825, September.
    7. Okhrin, Yarema & Uddin, Gazi Salah & Yahya, Muhammad, 2023. "Nonlinear and asymmetric interconnectedness of crude oil with financial and commodity markets," Energy Economics, Elsevier, vol. 125(C).
    8. Zhou, Xiaoran & Enilov, Martin & Parhi, Mamata, 2024. "Does oil spin the commodity wheel? Quantile connectedness with a common factor error structure across energy and agricultural markets," Energy Economics, Elsevier, vol. 132(C).
    9. Deyuan Zhang & Wensen She & Fang Qu & Chunyan He, 2023. "Asymmetric Risk Connectedness between Crude Oil and Agricultural Commodity Futures in China before and after the COVID-19 Pandemic: Evidence from High-Frequency Data," Energies, MDPI, vol. 16(16), pages 1-19, August.
    10. Yadav, Miklesh Prasad & Abedin, Mohammad Zoynul & Sinha, Neena & Arya, Vandana, 2024. "Uncovering dynamic connectedness of Artificial intelligence stocks with agri-commodity market in wake of COVID-19 and Russia-Ukraine Invasion," Research in International Business and Finance, Elsevier, vol. 67(PA).
    11. Ben Amar, Amine & Goutte, Stéphane & Isleimeyyeh, Mohammad, 2022. "Asymmetric cyclical connectedness on the commodity markets: Further insights from bull and bear markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 386-400.
    12. Lu, Ran & Xu, Wen & Zeng, Hongjun & Zhou, Xiangjing, 2023. "Volatility connectedness among the Indian equity and major commodity markets under the COVID-19 scenario," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1465-1481.
    13. Śmiech, Sławomir & Papież, Monika & Fijorek, Kamil & Dąbrowski, Marek A., 2019. "What drives food price volatility? Evidence based on a generalized VAR approach applied to the food, financial and energy markets," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 13, pages 1-32.
    14. Juncal Cunado & David Gabauer & Rangan Gupta, 2024. "Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    15. Collet, Jerome & Ielpo, Florian, 2018. "Sector spillovers in credit markets," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 267-278.
    16. Guo, Junjie & Li, Youshu & Shao, Qinglong, 2022. "Cross-category spillover effects of economic policy uncertainty between China and the US: Time and frequency evidence," Journal of Asian Economics, Elsevier, vol. 80(C).
    17. Algirdas Justinas Staugaitis & Bernardas Vaznonis, 2022. "Short-Term Speculation Effects on Agricultural Commodity Returns and Volatility in the European Market Prior to and during the Pandemic," Agriculture, MDPI, vol. 12(5), pages 1-26, April.
    18. Caporin, Massimiliano & Naeem, Muhammad Abubakr & Arif, Muhammad & Hasan, Mudassar & Vo, Xuan Vinh & Hussain Shahzad, Syed Jawad, 2021. "Asymmetric and time-frequency spillovers among commodities using high-frequency data," Resources Policy, Elsevier, vol. 70(C).
    19. Sanjay Kumar Rout & Hrushikesh Mallick, 2022. "Sovereign Bond Market Shock Spillover Over Different Maturities: A Journey from Normal to Covid-19 Period," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(4), pages 697-734, December.
    20. Cheng, Sheng & Deng, MingJie & Liang, Ruibin & Cao, Yan, 2023. "Asymmetric volatility spillover among global oil, gold, and Chinese sectors in the presence of major emergencies," Resources Policy, Elsevier, vol. 82(C).

    More about this item

    Keywords

    COVID-19; Russia–Ukraine war; Agricultural commodity; Spillover index;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • Q13 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Markets and Marketing; Cooperatives; Agribusiness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:217:y:2022:i:c:s0165176522002245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.