IDEAS home Printed from https://ideas.repec.org/a/aes/jsesro/v4y2015i1p29-45.html
   My bibliography  Save this article

Comparison Of Least Absolute Shrinkage And Selection Operator And Maximum Likelihood Estimators To Establish Determinants Of Immunization In Trans-Nzoia County

Author

Listed:
  • Sheilla Aoko OTIENO

    (University of Nairobi, Department of Mathematics)

  • Benson Munyali WAMALWA

    (University of Nairobi, Department of Chemistry)

  • Nelson Owuor ONYANGO

    (University of Nairobi, Department of Mathematics)

  • Joseph Antony Makoteku OTTIENO

    (University of Nairobi, Department of Mathematics)

  • Victor ONGOMA

    (South Eastern Kenya University, Department of Meteorology)

Abstract

The client factors that influence under-five child guardian compliance to the immunization schedule are interlinked based on household characteristics, socioeconomic status, and maternal health practices. An incentive to motivate the mothers to prioritize their child’s health practices especially on vaccination, works perfectly towards the achievement of full immunization coverage. A randomly sampled study carried out within Weonia Location– Trans Nzoia County in March 2014 with target population of under-five children showed the vital role an incentive innovation plays towards immunization coverage. Multinomial logistic regression model was used to analyze the determinant of partial or none-immunized and the parameters estimated using the maximum likelihood estimator (MLE) and the shrinkage estimator-Least Absolute Shrinkage and Selection Operator (LASSO). The shrinkage estimator method gave a sparse model that was easy to interpret and increased the estimated predictability accuracy. Maternal health practices and access to a motivating intervention are significant factors that ensure a guardian’s compliance to their child immunization.

Suggested Citation

  • Sheilla Aoko OTIENO & Benson Munyali WAMALWA & Nelson Owuor ONYANGO & Joseph Antony Makoteku OTTIENO & Victor ONGOMA, 2015. "Comparison Of Least Absolute Shrinkage And Selection Operator And Maximum Likelihood Estimators To Establish Determinants Of Immunization In Trans-Nzoia County," Journal of Social and Economic Statistics, Bucharest University of Economic Studies, vol. 4(1), pages 29-45, JULY.
  • Handle: RePEc:aes:jsesro:v:4:y:2015:i:1:p:29-45
    as

    Download full text from publisher

    File URL: http://www.jses.ase.ro/downloads/Vol4NO1/Otieno.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Parashar, Sangeeta, 2005. "Moving beyond the mother-child dyad: Women's education, child immunization, and the importance of context in rural India," Social Science & Medicine, Elsevier, vol. 61(5), pages 989-1000, September.
    2. Holte, Jon H. & Mæstad, Ottar & Jani, Jagrati V., 2012. "The decision to vaccinate a child: An economic perspective from southern Malawi," Social Science & Medicine, Elsevier, vol. 75(2), pages 384-391.
    3. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ping Wu & Xinchao Luo & Peirong Xu & Lixing Zhu, 2017. "New variable selection for linear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 627-646, June.
    2. Kramlinger, Peter & Schneider, Ulrike & Krivobokova, Tatyana, 2023. "Uniformly valid inference based on the Lasso in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    3. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    4. Mojtaba Ganjali & Taban Baghfalaki, 2018. "Application of Penalized Mixed Model in Identification of Genes in Yeast Cell-Cycle Gene Expression Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(2), pages 38-41, April.
    5. Shakhawat Hossain & Trevor Thomson & Ejaz Ahmed, 2018. "Shrinkage estimation in linear mixed models for longitudinal data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 569-586, July.
    6. Po-Hsien Huang & Hung Chen & Li-Jen Weng, 2017. "A Penalized Likelihood Method for Structural Equation Modeling," Psychometrika, Springer;The Psychometric Society, vol. 82(2), pages 329-354, June.
    7. Wei Wang & Shou‐En Lu & Jerry Q. Cheng & Minge Xie & John B. Kostis, 2022. "Multivariate survival analysis in big data: A divide‐and‐combine approach," Biometrics, The International Biometric Society, vol. 78(3), pages 852-866, September.
    8. Zangdong He & Wanzhu Tu & Sijian Wang & Haoda Fu & Zhangsheng Yu, 2015. "Simultaneous variable selection for joint models of longitudinal and survival outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 178-187, March.
    9. Abhik Ghosh & Magne Thoresen, 2018. "Non-concave penalization in linear mixed-effect models and regularized selection of fixed effects," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 179-210, April.
    10. Jan Pablo Burgard & Joscha Krause & Ralf Münnich, 2019. "Penalized Small Area Models for the Combination of Unit- and Area-level Data," Research Papers in Economics 2019-05, University of Trier, Department of Economics.
    11. Kin Yau Wong & Yair Goldberg & Jason P. Fine, 2016. "Oracle estimation of parametric models under boundary constraints," Biometrics, The International Biometric Society, vol. 72(4), pages 1173-1183, December.
    12. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    13. Averi Chakrabarti & Karen A Grépin & Stéphane Helleringer, 2019. "The impact of supplementary immunization activities on routine vaccination coverage: An instrumental variable analysis in five low-income countries," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-11, February.
    14. Guan, Wei & Gray, Alexander, 2013. "Sparse high-dimensional fractional-norm support vector machine via DC programming," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 136-148.
    15. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    16. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    17. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    18. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    20. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.

    More about this item

    Keywords

    Immunization; Logistic regression; LASSO; MLE;
    All these keywords.

    JEL classification:

    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aes:jsesro:v:4:y:2015:i:1:p:29-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bogdan-Vasile Ileanu (email available below). General contact details of provider: https://edirc.repec.org/data/aseeero.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.