IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej42-5-wangsness.html
   My bibliography  Save this article

The Impact of Electric Vehicle Density on Local Grid Costs: Empirical Evidence from Norway

Author

Listed:
  • Paal Brevik Wangsness and Askill Harkjerr Halse

Abstract

While a rapid shift towards electric vehicles (EVs) will contribute to reducing carbon emissions from the transport sector, there are concerns that uncoordinated charging of EVs might impose challenges for the local electricity grid. Our study is the first to investigate this empirically in a country-wide analysis, using data from the country with the highest market share of EVs, namely Norway. We present the regulatory framework in which Norwegian grid companies operate and discuss the possible impact of EV charging. Using panel data on 107 grid companies over the period 20082017, we then estimate the effect of local growth in EVs on local grid costs. We find that increases in EV stock are associated with increases in costs which are both statistically and economically significant. However, there is a lot of heterogeneity in these results, where the effect on grid costs are higher for small grid companies in rural areas.

Suggested Citation

  • Paal Brevik Wangsness and Askill Harkjerr Halse, 2021. "The Impact of Electric Vehicle Density on Local Grid Costs: Empirical Evidence from Norway," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
  • Handle: RePEc:aen:journl:ej42-5-wangsness
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=3732
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ramteen Sioshansi & Paul Denholm, 2010. "The Value of Plug-In Hybrid Electric Vehicles as Grid Resources," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-24.
    2. Wangsness, Paal Brevik & Proost, Stef & Rødseth, Kenneth Løvold, 2018. "Vehicle choices and urban transport externalities. Are Norwegian policy makers getting it right?," Working Paper Series 2-2018, Norwegian University of Life Sciences, School of Economics and Business.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wangsness, Paal Brevik & Proost, Stef & Rødseth, Kenneth Løvold, 2021. "Optimal policies for electromobility: Joint assessment of transport and electricity distribution costs in Norway," Utilities Policy, Elsevier, vol. 72(C).
    2. Iliana Ilieva & Bernt Bremdal, 2021. "Utilizing Local Flexibility Resources to Mitigate Grid Challenges at Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(12), pages 1-15, June.
    3. Steinbach, Sarah A. & Blaschke, Maximilian J., 2024. "Enabling electric mobility: Can photovoltaic and home battery systems significantly reduce grid reinforcement costs?," Applied Energy, Elsevier, vol. 375(C).
    4. Sherzod N. Tashpulatov, 2022. "Modeling Electricity Price Dynamics Using Flexible Distributions," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
    5. Floris Montfoort & Peter T. Dijkstra & Machiel Mulder, 2024. "The impact of energy transition on distribution network costs and effectiveness of yardstick competition: an empirical analysis for the Netherlands," Journal of Regulatory Economics, Springer, vol. 65(1), pages 85-107, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kverndokk, Snorre & Figenbaum, Erik & Hovi, Jon, 2020. "Would my driving pattern change if my neighbor were to buy an emission-free car?," Resource and Energy Economics, Elsevier, vol. 60(C).
    2. Ramos-Real, Francisco J. & Ramírez-Díaz, Alfredo & Marrero, Gustavo A. & Perez, Yannick, 2018. "Willingness to pay for electric vehicles in island regions: The case of Tenerife (Canary Islands)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 140-149.
    3. Littlejohn, Christina & Proost, Stef, 2022. "What role for electric vehicles in the decarbonization of the car transport sector in Europe?," Economics of Transportation, Elsevier, vol. 32(C).
    4. Dallinger, David & Gerda, Schubert & Wietschel, Martin, 2013. "Integration of intermittent renewable power supply using grid-connected vehicles – A 2030 case study for California and Germany," Applied Energy, Elsevier, vol. 104(C), pages 666-682.
    5. Asadi, Amin & Nurre Pinkley, Sarah, 2021. "A stochastic scheduling, allocation, and inventory replenishment problem for battery swap stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    6. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    7. Weiller, Claire, 2011. "Plug-in hybrid electric vehicle impacts on hourly electricity demand in the United States," Energy Policy, Elsevier, vol. 39(6), pages 3766-3778, June.
    8. Goebel, Christoph, 2013. "On the business value of ICT-controlled plug-in electric vehicle charging in California," Energy Policy, Elsevier, vol. 53(C), pages 1-10.
    9. Hidrue, Michael K. & Parsons, George R., 2015. "Is there a near-term market for vehicle-to-grid electric vehicles?," Applied Energy, Elsevier, vol. 151(C), pages 67-76.
    10. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    11. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    12. Weiller, C. & Neely, A., 2014. "Using electric vehicles for energy services: Industry perspectives," Energy, Elsevier, vol. 77(C), pages 194-200.
    13. Sioshansi, Ramteen & Fagiani, Riccardo & Marano, Vincenzo, 2010. "Cost and emissions impacts of plug-in hybrid vehicles on the Ohio power system," Energy Policy, Elsevier, vol. 38(11), pages 6703-6712, November.
    14. Ryosuke Kataoka & Kazuhiko Ogimoto & Yumiko Iwafune, 2021. "Marginal Value of Vehicle-to-Grid Ancillary Service in a Power System with Variable Renewable Energy Penetration and Grid Side Flexibility," Energies, MDPI, vol. 14(22), pages 1-21, November.
    15. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    16. Schill, Wolf-Peter & Gerbaulet, Clemens, 2015. "Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 156, pages 185-196.
    17. Maria Gracia Rodríguez-Brito & Alfredo J. Ramírez-Díaz & Francisco J. Ramos-Real & Yannick Perez, 2018. "Psychosocial Traits Characterizing EV Adopters’ Profiles: The Case of Tenerife (Canary Islands)," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    18. Heilmann, C. & Friedl, G., 2021. "Factors influencing the economic success of grid-to-vehicle and vehicle-to-grid applications—A review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2017. "Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology," Energy, Elsevier, vol. 120(C), pages 608-618.
    20. Schill, Wolf-Peter & Niemeyer, Moritz & Zerrahn, Alexander & Diekmann, Jochen, 2016. "Bereitstellung von Regelleistung durch Elektrofahrzeuge: Modellrechnungen für Deutschland im Jahr 2035," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 40(2), pages 73-87.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej42-5-wangsness. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.