Optimal CO2-abatement with Socio-economic Inertia and Induced Technological Change
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Malte Schwoon & Richard S.J. Tol, 2006. "Optimal CO2-abatement with Socio-economic Inertia and Induced Technological Change," The Energy Journal, , vol. 27(4), pages 25-60, October.
- Malte Schwoon & Richard S.J. Tol, 2004. "Optimal CO2-abatement with socio-economic inertia and induced technological change," Working Papers FNU-37, Research unit Sustainability and Global Change, Hamburg University, revised Jan 2004.
References listed on IDEAS
- Toman, Michael & Shogren, Jason, 2000.
"Climate Change Policy,"
RFF Working Paper Series
dp-00-22, Resources for the Future.
- Shogren, Jason F. & Toman, Michael, 2000. "Climate Change Policy," Discussion Papers 10767, Resources for the Future.
- Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
- M. Ha-Duong & M. J. Grubb & J.-C. Hourcade, 1997.
"Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement,"
Nature, Nature, vol. 390(6657), pages 270-273, November.
- Minh Ha-Duong & Michael J. Grubb & Jean Charles Hourcade, 1997. "Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement," Post-Print halshs-00002452, HAL.
- Rasmussen, Tobias N., 2001. "CO2 abatement policy with learning-by-doing in renewable energy," Resource and Energy Economics, Elsevier, vol. 23(4), pages 297-325, October.
- Pindyck, Robert S., 2000.
"Irreversibilities and the timing of environmental policy,"
Resource and Energy Economics, Elsevier, vol. 22(3), pages 233-259, July.
- Pindyck, Robert S., 1998. "Irreversibilities and the timing of environmental policy," Working papers WP 4047-98., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Grubb, Michael & Chapuis, Thierry & Duong, Minh Ha, 1995.
"The economics of changing course : Implications of adaptability and inertia for optimal climate policy,"
Energy Policy, Elsevier, vol. 23(4-5), pages 417-431.
- Michael J. Grubb & Chapuis Thierry & Minh Ha-Duong, 1995. "The economics of changing course: implications of adaptability and inertia for optimal climate policy," Post-Print halshs-00002455, HAL.
- Pindyck, Robert S., 2002. "Optimal timing problems in environmental economics," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1677-1697, August.
- Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
- Argote, L. & Epple, D., 1990. "Learning Curves In Manufacturing," GSIA Working Papers 89-90-02, Carnegie Mellon University, Tepper School of Business.
- Manne, Alan & Richels, Richard, 2004. "The impact of learning-by-doing on the timing and costs of CO2 abatement," Energy Economics, Elsevier, vol. 26(4), pages 603-619, July.
- Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
- Hourcade, Jean-Charles & Chapuis, Thierry, 1995. "No-regret potentials and technical innovation : A viability approach to integrated assessment of climate policies," Energy Policy, Elsevier, vol. 23(4-5), pages 433-445.
- Don H. Mann, 1975. "Optimal Theoretic Advertising Stock Models: A Generalization Incorporating the Effects of Delayed Response from Promotional Expenditure," Management Science, INFORMS, vol. 21(7), pages 823-832, March.
- El-Hodiri, Mohamed A & Loehman, Edna & Whinston, Andrew B, 1972. "An Optimal Growth Model with Time Lags," Econometrica, Econometric Society, vol. 40(6), pages 1137-1146, November.
- Manne, Alan S. & Barreto, Leonardo, 2004. "Learn-by-doing and carbon dioxide abatement," Energy Economics, Elsevier, vol. 26(4), pages 621-633, July.
- Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
- Loschel, Andreas, 2002.
"Technological change in economic models of environmental policy: a survey,"
Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
- Löschel, Andreas, 2001. "Technological change in economic models of environmental policy: a survey," ZEW Discussion Papers 01-62, ZEW - Leibniz Centre for European Economic Research.
- Lecocq, Franck & Hourcade, Jean-Charles & Ha Duong, Minh, 1998.
"Decision making under uncertainty and inertia constraints: sectoral implications of the when flexibility,"
Energy Economics, Elsevier, vol. 20(5-6), pages 539-555, December.
- Franck Lecocq & Jean Charles Hourcade & Minh Ha-Duong, 1998. "Decision making under uncertainty and inertia constraints: sectoral implications of the when flexibility," Post-Print halshs-00002458, HAL.
- Grubb, Michael, 1997. "Technologies, energy systems and the timing of CO2 emissions abatement : An overview of economic issues," Energy Policy, Elsevier, vol. 25(2), pages 159-172, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Popp, David & Santen, Nidhi & Fisher-Vanden, Karen & Webster, Mort, 2013.
"Technology variation vs. R&D uncertainty: What matters most for energy patent success?,"
Resource and Energy Economics, Elsevier, vol. 35(4), pages 505-533.
- David Popp & Nidhi Santen & Karen Fisher-Vanden & Mort Webster, 2012. "Technology Variation vs. R&D Uncertainty: What Matters Most for Energy Patent Success?," NBER Working Papers 17792, National Bureau of Economic Research, Inc.
- Lennox, James A. & Witajewski-Baltvilks, Jan, 2017.
"Directed technical change with capital-embodied technologies: Implications for climate policy,"
Energy Economics, Elsevier, vol. 67(C), pages 400-409.
- James A. Lennox & Jan Witajewski, 2014. "Directed Technical Change With Capital-Embodied Technologies: Implications For Climate Policy," Working Papers 2014.73, Fondazione Eni Enrico Mattei.
- Lennox, James A. & Witajewski, Jan, 2014. "Directed Technical Change With Capital-Embodied Technologies: Implications For Climate Policy," Climate Change and Sustainable Development 183143, Fondazione Eni Enrico Mattei (FEEM).
- Weiwei Xiong & Katsumasa Tanaka & Philippe Ciais & Daniel J. A. Johansson & Mariliis Lehtveer, 2022. "emIAM v1.0: an emulator for Integrated Assessment Models using marginal abatement cost curves," Papers 2212.12060, arXiv.org.
- repec:hal:ciredw:hal-00916328 is not listed on IDEAS
- Guo, Jian-Xin & Zhu, Lei & Fan, Ying, 2016. "Emission path planning based on dynamic abatement cost curve," European Journal of Operational Research, Elsevier, vol. 255(3), pages 996-1013.
- Adrien Vogt-Schilb & St�phane Hallegatte & Christophe de Gouvello, 2015.
"Marginal abatement cost curves and the quality of emission reductions: a case study on Brazil,"
Climate Policy, Taylor & Francis Journals, vol. 15(6), pages 703-723, November.
- Adrien Vogt-Schilb & Stéphane Hallegatte & Christophe de Gouvello, 2014. "Marginal Abatement Cost Curves and Quality of Emission Reductions: A Case Study on Brazil," Post-Print hal-00966821, HAL.
- Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010.
"Energy, the Environment, and Technological Change,"
Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937,
Elsevier.
- David Popp & Richard G. Newell & Adam B. Jaffe, 2009. "Energy, the Environment, and Technological Change," NBER Working Papers 14832, National Bureau of Economic Research, Inc.
- Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2014.
"Marginal abatement cost curves and the optimal timing of mitigation measures,"
Energy Policy, Elsevier, vol. 66(C), pages 645-653.
- Adrien Vogt-Schilb & Stéphane Hallegatte, 2013. "Marginal Abatement Cost Curves and the Optimal Timing of Mitigation Measures," Working Papers 2013.89, Fondazione Eni Enrico Mattei.
- Vogt-Schilb, Adrien & Hallegatte, Stéphane, 2013. "Marginal Abatement Cost Curves and the Optimal Timing of Mitigation Measures," Climate Change and Sustainable Development 162372, Fondazione Eni Enrico Mattei (FEEM).
- Adrien Vogt-Schilb & Stéphane Hallegatte, 2014. "Marginal abatement cost curves and the optimal timing of mitigation measures," Post-Print hal-00916328, HAL.
- repec:hal:wpaper:hal-00916328 is not listed on IDEAS
- Vogt-Schilb, Adrien & Hallegatte, Stephane, 2011.
"When starting with the most expensive option makes sense : use and misuse of marginal abatement cost curves,"
Policy Research Working Paper Series
5803, The World Bank.
- Adrien Vogt-Schilb & Stéphane Hallegatte, 2013. "When Starting with the Most Expensive Option Makes Sense On Marginal Abatement Cost Curves and Optimal Abatement Pathways," Working Papers hal-00626261, HAL.
- Adrien Vogt-Schilb & Stéphane Hallegatte, 2013. "When Starting with the Most Expensive Option Makes Sense On Marginal Abatement Cost Curves and Optimal Abatement Pathways," CIRED Working Papers hal-00626261, HAL.
- Adrien Vogt-Schilb & Stéphane Hallegatte, 2013. "Marginal Abatement Cost Curves and the Optimal Timing of Mitigation Measures," Working Papers 2013.89, Fondazione Eni Enrico Mattei.
- Tol, Richard S.J., 2013.
"Targets for global climate policy: An overview,"
Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
- Richard S.J. Tol, 2012. "Targets for Global Climate Policy: An Overview," Working Paper Series 3712, Department of Economics, University of Sussex Business School.
- Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder, 2011. "Energy Efficiency and Technological Change," Chapters, in: Raymond J.G.M. Florax & Henri L.F. de Groot & Peter Mulder (ed.), Improving Energy Efficiency through Technology, chapter 1, Edward Elgar Publishing.
- Edward Barbier, 2011. "The policy challenges for green economy and sustainable economic development," Natural Resources Forum, Blackwell Publishing, vol. 35(3), pages 233-245, August.
- Pizer, William A. & Popp, David, 2008.
"Endogenizing technological change: Matching empirical evidence to modeling needs,"
Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
- William A. Pizer & David Popp, 2007. "Endogenizing Technological Change: Matching Empirical Evidence to Modeling Needs," NBER Working Papers 13053, National Bureau of Economic Research, Inc.
- Pizer, William A. & Popp, David, 2007. "Endogenizing Technological Change: Matching Empirical Evidence to Modeling Needs," RFF Working Paper Series dp-07-11, Resources for the Future.
- Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stéphane, 2018.
"When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment,"
Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 210-233.
- Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stéphane, 2017. "When starting with the most expensive option makes sense: optimal timing, cost and sectoral allocation of abatement investment," MPRA Paper 82608, University Library of Munich, Germany.
- Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stephane, 2018. "When Starting with the Most Expensive Option Makes Sense: Optimal Timing, Cost and Sectoral Allocation of Abatement Investment," IDB Publications (Working Papers) 8809, Inter-American Development Bank.
- Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stephane, 2012.
"How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy,"
Policy Research Working Paper Series
6154, The World Bank.
- Guy Meunier, 2013. "How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy," Working Papers hal-02804651, HAL.
- Adrien Vogt-Schilb & Guy Meunier & Stéphane Hallegatte, 2012. "How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy," Post-Print hal-00722574, HAL.
- Giorgio Ferrari & Torben Koch, 2019. "On a strategic model of pollution control," Annals of Operations Research, Springer, vol. 275(2), pages 297-319, April.
- Bistline, John E., 2016. "Energy technology R&D portfolio management: Modeling uncertain returns and market diffusion," Applied Energy, Elsevier, vol. 183(C), pages 1181-1196.
- Ferrari, Giorgio & Koch, Torben, 2018. "On a Strategic Model of Pollution Control," Center for Mathematical Economics Working Papers 586, Center for Mathematical Economics, Bielefeld University.
- Edward B. Barbier, 2013. "Is a global crisis required to prevent climate change? A historical–institutional perspective," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 28, pages 598-614, Edward Elgar Publishing.
- Edward B. Barbier, 2012. "Économie verte et développement durable : enjeux de politique économique," Reflets et perspectives de la vie économique, De Boeck Université, vol. 0(4), pages 97-117.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008.
"Modeling endogenous technological change for climate policy analysis,"
Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
- Gillingham, Kenneth T. & Newell, Richard G. & Pizer, William A., 2007. "Modeling Endogenous Technological Change for Climate Policy Analysis," RFF Working Paper Series dp-07-14, Resources for the Future.
- Kverndokk, Snorre & Rosendahl, Knut Einar, 2007. "Climate policies and learning by doing: Impacts and timing of technology subsidies," Resource and Energy Economics, Elsevier, vol. 29(1), pages 58-82, January.
- Kolstad, Charles D. & Toman, Michael, 2005.
"The Economics of Climate Policy,"
Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 30, pages 1561-1618,
Elsevier.
- Toman, Michael & Kolstad, Charles, 2000. "The Economics of Climate Policy," RFF Working Paper Series dp-00-40, Resources for the Future.
- Kolstad, Charles D. & Toman, Michael, 2001. "The Economics of Climate Policy," Discussion Papers 10783, Resources for the Future.
- Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
- Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
- Takanobu Kosugi, 2010. "Assessments of ‘Greenhouse Insurance’: A Methodological Review," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(4), pages 345-363, December.
- Pizer, William A. & Popp, David, 2008.
"Endogenizing technological change: Matching empirical evidence to modeling needs,"
Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
- William A. Pizer & David Popp, 2007. "Endogenizing Technological Change: Matching Empirical Evidence to Modeling Needs," NBER Working Papers 13053, National Bureau of Economic Research, Inc.
- Pizer, William A. & Popp, David, 2007. "Endogenizing Technological Change: Matching Empirical Evidence to Modeling Needs," RFF Working Paper Series dp-07-11, Resources for the Future.
- Kverndokk, Snorre & Rosendahl, Knut Einar & Rutherford, Thomas F., 2004. "Climate policies and induced technological change: Impacts and timing of technology subsidies," Memorandum 05/2004, Oslo University, Department of Economics.
- Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stephane, 2012.
"How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy,"
Policy Research Working Paper Series
6154, The World Bank.
- Adrien Vogt-Schilb & Guy Meunier & Stéphane Hallegatte, 2012. "How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy," Post-Print hal-00722574, HAL.
- Guy Meunier, 2013. "How inertia and limited potentials affect the timing of sectoral abatements in optimal climate policy," Working Papers hal-02804651, HAL.
- Hallegatte, Stephane & Heal, Geoffrey & Fay, Marianne & Treguer, David, 2011.
"From growth to green growth -- a framework,"
Policy Research Working Paper Series
5872, The World Bank.
- Stéphane Hallegatte & Geoffrey Heal & Marianne Fay & David Treguer, 2012. "From Growth to Green Growth - a Framework," NBER Working Papers 17841, National Bureau of Economic Research, Inc.
- Loschel, Andreas, 2002.
"Technological change in economic models of environmental policy: a survey,"
Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
- Löschel, Andreas, 2001. "Technological change in economic models of environmental policy: a survey," ZEW Discussion Papers 01-62, ZEW - Leibniz Centre for European Economic Research.
- Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010.
"Energy, the Environment, and Technological Change,"
Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937,
Elsevier.
- David Popp & Richard G. Newell & Adam B. Jaffe, 2009. "Energy, the Environment, and Technological Change," NBER Working Papers 14832, National Bureau of Economic Research, Inc.
- Baker, Erin & Shittu, Ekundayo, 2008. "Uncertainty and endogenous technical change in climate policy models," Energy Economics, Elsevier, vol. 30(6), pages 2817-2828, November.
- Jaccard, Mark & Rivers, Nic, 2007. "Heterogeneous capital stocks and the optimal timing for CO2 abatement," Resource and Energy Economics, Elsevier, vol. 29(1), pages 1-16, January.
- Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
- Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
- Toman, Michael & Shogren, Jason, 2000.
"Climate Change Policy,"
RFF Working Paper Series
dp-00-22, Resources for the Future.
- Shogren, Jason F. & Toman, Michael, 2000. "Climate Change Policy," Discussion Papers 10767, Resources for the Future.
- Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
- Michael Toman, 1998.
"Research Frontiers in the Economics of Climate Change,"
Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 603-621, April.
- Toman, Michael, 1998. "Research Frontiers in the Economics of Climate Change," RFF Working Paper Series dp-98-32, Resources for the Future.
- Toman, Michael, 1998. "Research Frontiers in the Economics of Climate Change," Discussion Papers 10507, Resources for the Future.
- Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017.
"Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty,"
Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
- Mort D. Webster & Karen Fisher-Vanden & David Popp & Nidhi R. Santen, 2015. "Should We Give Up After Solyndra? Optimal Technology R&D Portfolios under Uncertainty," CESifo Working Paper Series 5448, CESifo.
- Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2015. "Should We Give Up After Solyndra? Optimal Technology R&D Portfolios under Uncertainty," NBER Working Papers 21396, National Bureau of Economic Research, Inc.
More about this item
JEL classification:
- F0 - International Economics - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:2006v27-04-a02. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Williams (email available below). General contact details of provider: https://edirc.repec.org/data/iaeeeea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.