IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2004.90.html
   My bibliography  Save this paper

Climate Agreements and Technology Policy

Author

Listed:
  • Michael Hoel

    (Department of Economics, University of Oslo)

  • Rolf Golombek

    (Frisch Centre)

Abstract

We study climate policy when there are technology spillovers within and across countries, and the technology externalities within each country are corrected through a domestic subsidy of R&D investments. We compare the properties of international climate agreements when the inter-country externalities from R&D are not regulated through the climate agreement. With an international agreement controlling abatements directly through emission quotas, the equilibrium R&D subsidy is lower that the socially optimal subsidy. The equilibrium subsidy is even lower if the climate agreement does not specify emission levels directly, but instead imposes a common carbon tax. Social costs are higher under a tax agreement than under a quota agreement. Moreover, for a reasonable assumption on the abatement cost function, R&D investments and abatement levels are lower under a tax agreement than under a quota agreement. Total emissions may be higher or lower in a second-best optimal quota agreement than in the first-best optimum.

Suggested Citation

  • Michael Hoel & Rolf Golombek, 2004. "Climate Agreements and Technology Policy," Working Papers 2004.90, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2004.90
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/NDL2004-090.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rosendahl, Knut Einar, 2004. "Cost-effective environmental policy: implications of induced technological change," Journal of Environmental Economics and Management, Elsevier, vol. 48(3), pages 1099-1121, November.
    2. Rasmussen, Tobias N., 2001. "CO2 abatement policy with learning-by-doing in renewable energy," Resource and Energy Economics, Elsevier, vol. 23(4), pages 297-325, October.
    3. Carlo Carraro & Carmen Marchiori, 2003. "Endogenous Strategic Issue Linkage in International Negotiations," Working Papers 2003.40, Fondazione Eni Enrico Mattei.
    4. Rolf Golombek & Michael Hoel, 2005. "Climate Policy under Technology Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(2), pages 201-227, June.
    5. Slim Ben Youssef, 2009. "Transboundary pollution, R&D spillovers and international trade," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 43(1), pages 235-250, March.
    6. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    7. C Carraro & Jc Hourcade, 1998. "Climate modelling and policy strategies. The role of technical change and uncertainty," Post-Print hal-00716515, HAL.
    8. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    9. Goulder, Lawrence H. & Mathai, Koshy, 2000. "Optimal CO2 Abatement in the Presence of Induced Technological Change," Journal of Environmental Economics and Management, Elsevier, vol. 39(1), pages 1-38, January.
    10. Michael Hoel, 1993. "Harmonization of carbon taxes in international climate agreements," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 3(3), pages 221-231, June.
    11. Hoel, Michael, 1992. "Carbon taxes : An international tax or harmonized domestic taxes?," European Economic Review, Elsevier, vol. 36(2-3), pages 400-406, April.
    12. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    13. Adam Jaffe & Richard Newell & Robert Stavins, 2002. "Environmental Policy and Technological Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 22(1), pages 41-70, June.
    14. Xepapadeas, A., 1995. "Induced technical change and international agreements under greenhouse warming," Resource and Energy Economics, Elsevier, vol. 17(1), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alistair Ulph & David Ulph, 2007. "Climate change—environmental and technology policies in a strategic context," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 159-180, May.
    2. Golombek, Rolf & Hoel, Michael, 2008. "Endogenous technology and tradable emission quotas," Resource and Energy Economics, Elsevier, vol. 30(2), pages 197-208, May.
    3. De Cian, Enrica & Tavoni, Massimo, 2012. "Do technology externalities justify restrictions on emission permit trading?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 624-646.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rolf Golombek & Michael Hoel, 2005. "Climate Policy under Technology Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(2), pages 201-227, June.
    2. Golombek Rolf & Hoel Michael, 2006. "Second-Best Climate Agreements and Technology Policy," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 6(1), pages 1-30, January.
    3. Golombek, Rolf & Hoel, Michael, 2004. "Unilateral emission reductions when there are cross -country technology spillovers," Memorandum 17/2004, Oslo University, Department of Economics.
    4. Gerlagh , Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2008. "Linking Environmental and Innovation Policy," Memorandum 10/2008, Oslo University, Department of Economics.
    5. Golombek, Rolf & Hoel, Michael, 2008. "Endogenous technology and tradable emission quotas," Resource and Energy Economics, Elsevier, vol. 30(2), pages 197-208, May.
    6. Jin, Wei, 2016. "International technology diffusion, multilateral R&D coordination, and global climate mitigation," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 357-372.
    7. Mélanie Heugues, 2014. "International environmental cooperation: a new eye on the greenhouse gas emissions’ control," Annals of Operations Research, Springer, vol. 220(1), pages 239-262, September.
    8. Kverndokk, Snorre & Rosendahl, Knut Einar, 2007. "Climate policies and learning by doing: Impacts and timing of technology subsidies," Resource and Energy Economics, Elsevier, vol. 29(1), pages 58-82, January.
    9. Malte Schwoon & Richard S.J. Tol, 2006. "Optimal CO2-abatement with Socio-economic Inertia and Induced Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 25-60.
    10. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    11. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    12. Wei Jin, 2012. "International Knowledge Spillover and Technology Externality: Why Multilateral R&D Coordination Matters for Global Climate Governance," CAMA Working Papers 2012-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    13. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    14. Perino, Grischa & Requate, Till, 2012. "Does more stringent environmental regulation induce or reduce technology adoption? When the rate of technology adoption is inverted U-shaped," Journal of Environmental Economics and Management, Elsevier, vol. 64(3), pages 456-467.
    15. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    16. Hart, Rob, 2008. "The timing of taxes on CO2 emissions when technological change is endogenous," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 194-212, March.
    17. Barbara Buchner & Carlo Carraro & Igor Cersosimo & Carmen Marchiori, 2002. "Back to Kyoto? US Participation and the Linkage between R&D and Climate Cooperation," CESifo Working Paper Series 688, CESifo.
    18. Kverndokk, Snorre & Rosendahl, Knut Einar & Rutherford, Thomas F., 2004. "Climate policies and induced technological change: Impacts and timing of technology subsidies," Memorandum 05/2004, Oslo University, Department of Economics.
    19. Maogang Tang & Silu Cheng & Wenqing Guo & Weibiao Ma & Fengxia Hu, 2023. "Relationship between carbon emission trading schemes and companies’ total factor productivity: evidence from listed companies in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11735-11767, October.
    20. Ricci, Francesco, 2007. "Channels of transmission of environmental policy to economic growth: A survey of the theory," Ecological Economics, Elsevier, vol. 60(4), pages 688-699, February.

    More about this item

    Keywords

    Climate policy; International environmental agreements; R&D Policy; Technology spillovers;
    All these keywords.

    JEL classification:

    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2004.90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.