IDEAS home Printed from https://ideas.repec.org/a/adm/journl/v8y2019i2p20-24.html
   My bibliography  Save this article

The Nesfatin-1 Pathway from Hippocampus to Ventromedial Nucleus and its Regulation on Gastric Motility in Diabetic Rat

Author

Listed:
  • Baohua Jing
  • Qing Yang
  • Weidong Xin
  • Luo Xu

Abstract

Objective: To investigate the effect of microinjection of Nesfatin-1 into VMH on gastric motility in diabetic rats and its regulatory mechanism, and to study whether electrical stimulation of hippocampal CA1 region can regulate this process. Methods: The diabetic rat model was established, and the hippocampal-VMH nesfatin-1 pathway was observed by retrograde gold fluorescence tracing combined with fluorescence immunohistochemistry. The effects of microinjection of nesfatin-1 by VMH and electrical stimulation of hippocampus on gastric motility were observed in vivo. Results: Nesfatin-1 inhibited gastric motility in a dose-dependent manner, and astressin-B partially blocked the inhibition of nesfatin-1 on gastric motility; Nesfatin-1 immunoreactive neurons were present in the cytoplasm of hippocampal CA1 region and Nesfatin-1 was expressed in some fluorescent gold labeled cells; electrostimulation of hippocampal CA1 region could promote gastric motility in diabetic rats, and anti-NUCB2/Nesfatin-1 antibody could promote gastric motility in diabetic rats.Enhance the effect of electrical stimulation of hippocampal CA1 region on gastric motility. Conclusion: Nesfatin-1 injection into VMH can regulate gastric motility in diabetic rats, which may be related to the CRF system, and the hippocampal CA1 region participates in the regulation of gastric motility by nesfatin-1 in VMH.

Suggested Citation

  • Baohua Jing & Qing Yang & Weidong Xin & Luo Xu, 2019. "The Nesfatin-1 Pathway from Hippocampus to Ventromedial Nucleus and its Regulation on Gastric Motility in Diabetic Rat," International Journal of Sciences, Office ijSciences, vol. 8(02), pages 20-24, February.
  • Handle: RePEc:adm:journl:v:8:y:2019:i:2:p:20-24
    DOI: 10.18483/ijSci.1892
    as

    Download full text from publisher

    File URL: https://www.ijsciences.com/pub/article/1892
    Download Restriction: no

    File URL: https://www.ijsciences.com/pub/pdf/V82019021892.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.18483/ijSci.1892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael W. Schwartz & Stephen C. Woods & Daniel Porte & Randy J. Seeley & Denis G. Baskin, 2000. "Central nervous system control of food intake," Nature, Nature, vol. 404(6778), pages 661-671, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Huang & Anyongqi Wang & Wenjiang Zhou & Baoguo Li & Linshan Zhang & Agata M. Rudolf & Zengguang Jin & Catherine Hambly & Guanlin Wang & John R. Speakman, 2024. "Maternal dietary fat during lactation shapes single nucleus transcriptomic profile of postnatal offspring hypothalamus in a sexually dimorphic manner in mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Franklin Amuakwa-Mensah & George Marbuah & Mwenya Mubanga, 2016. "Climate variability and infectious diseases nexus: evidence from Sweden," Working Papers 2016.02, FAERE - French Association of Environmental and Resource Economists.
    3. Jessica Schwarz & Jasmine Burguet & Olivier Rampin & Gilles Fromentin & Philippe Andrey & Daniel Tomé & Yves Maurin & Nicolas Darcel, 2010. "Three-Dimensional Macronutrient-Associated Fos Expression Patterns in the Mouse Brainstem," PLOS ONE, Public Library of Science, vol. 5(2), pages 1-8, February.
    4. Hui Chen & David Simar & Margaret J Morris, 2009. "Hypothalamic Neuroendocrine Circuitry is Programmed by Maternal Obesity: Interaction with Postnatal Nutritional Environment," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-10, July.
    5. Laia Guardia-Escote & Jordi Blanco & Pia Basaure & Judit Biosca-Brull & Rikst Nynke Verkaik-Schakel & Maria Cabré & Fiona Peris-Sampedro & Cristian Pérez-Fernández & Fernando Sánchez-Santed & Torsten , 2020. "Sex and Exposure to Postnatal Chlorpyrifos Influence the Epigenetics of Feeding-Related Genes in a Transgenic APOE Mouse Model: Long-Term Implications on Body Weight after a High-Fat Diet," IJERPH, MDPI, vol. 18(1), pages 1-17, December.
    6. Trenton Smith, 2009. "Reconciling psychology with economics: Obesity, behavioral biology, and rational overeating," Journal of Bioeconomics, Springer, vol. 11(3), pages 249-282, December.
    7. Yanine, Franco Fernando & Caballero, Federico I. & Sauma, Enzo E. & Córdova, Felisa M., 2014. "Building sustainable energy systems: Homeostatic control of grid-connected microgrids, as a means to reconcile power supply and energy demand response management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1168-1191.
    8. Smith, Trenton G, 2002. "Obesity and Nature's Thumbprint: How Modern Waistlines Can Inform Economic Theory," University of California at Santa Barbara, Economics Working Paper Series qt31g1m028, Department of Economics, UC Santa Barbara.
    9. Brad Shuck & Joy L. Hart & Kandi L. Walker & Jayesh Rai & Shweta Srivastava & Sanjay Srivastava & Shesh Rai & Aruni Bhatnagar & Rachel J. Keith, 2022. "Workplace Culture and Biomarkers of Health Risk," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    10. Yanyi Li & Jiabo Zhang, 2020. "The Effect of Acute Erythromycin Exposure on the Swimming Ability of Zebrafish ( Danio rerio ) and Medaka ( Oryzias latipes )," IJERPH, MDPI, vol. 17(10), pages 1-16, May.
    11. Alex M Gavrila & Suzanne Hood & Barry Robinson & Shimon Amir, 2017. "Effects of bilateral anterior agranular insula lesions on food anticipatory activity in rats," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adm:journl:v:8:y:2019:i:2:p:20-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Staff ijSciences (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.