Performance Evaluation on Mass Recovery Three-Bed Adsorption Chiller
Author
Abstract
Suggested Citation
DOI: 10.18483/ijSci.2224
Download full text from publisher
References listed on IDEAS
- Alam, K.C.A. & Akahira, A. & Hamamoto, Y. & Akisawa, A. & Kashiwagi, T., 2004. "A four-bed mass recovery adsorption refrigeration cycle driven by low temperature waste/renewable heat source," Renewable Energy, Elsevier, vol. 29(9), pages 1461-1475.
- Saha, B.B & Akisawa, A & Kashiwagi, T, 2001. "Solar/waste heat driven two-stage adsorption chiller: the prototype," Renewable Energy, Elsevier, vol. 23(1), pages 93-101.
- Saha, Bidyut B. & Koyama, Shigeru & Choon Ng, Kim & Hamamoto, Yoshinori & Akisawa, Atsushi & Kashiwagi, Takao, 2006. "Study on a dual-mode, multi-stage, multi-bed regenerative adsorption chiller," Renewable Energy, Elsevier, vol. 31(13), pages 2076-2090.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
- Basdanis, Thanasis & Tsimpoukis, Alexandros & Valougeorgis, Dimitris, 2021. "Performance optimization of a solar adsorption chiller by dynamically adjusting the half-cycle time," Renewable Energy, Elsevier, vol. 164(C), pages 362-374.
- Santori, Giulio & Sapienza, Alessio & Freni, Angelo, 2012. "A dynamic multi-level model for adsorptive solar cooling," Renewable Energy, Elsevier, vol. 43(C), pages 301-312.
- Wu, J.Y. & Li, S., 2009. "Study on cyclic characteristics of silica gel–water adsorption cooling system driven by variable heat source," Energy, Elsevier, vol. 34(11), pages 1955-1962.
- Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
- Anand, S. & Gupta, A. & Tyagi, S.K., 2015. "Solar cooling systems for climate change mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 143-161.
- Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
- Li, Ang & Ismail, Azhar Bin & Thu, Kyaw & Ng, Kim Choon & Loh, Wai Soong, 2014. "Performance evaluation of a zeolite–water adsorption chiller with entropy analysis of thermodynamic insight," Applied Energy, Elsevier, vol. 130(C), pages 702-711.
- Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
- Aep Saepul Uyun & Takahiko Miyazaki & Yuki Ueda & Atsushi Akisawa, 2009. "High Performance Cascading Adsorption Refrigeration Cycle with Internal Heat Recovery Driven by a Low Grade Heat Source Temperature," Energies, MDPI, vol. 2(4), pages 1-22, November.
- Aep Saepul Uyun & Takahiko Miyazaki & Yuki Ueda & Atsushi Akisawa, 2009. "Experimental Investigation of a Three-Bed Adsorption Refrigeration Chiller Employing an Advanced Mass Recovery Cycle," Energies, MDPI, vol. 2(3), pages 1-14, July.
- Sharafian, Amir & Bahrami, Majid, 2014. "Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 440-451.
- Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
- Hassan, H.Z. & Mohamad, A.A. & Bennacer, R., 2011. "Simulation of an adsorption solar cooling system," Energy, Elsevier, vol. 36(1), pages 530-537.
- Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Chauhan, P.R. & Kaushik, S.C. & Tyagi, S.K., 2022. "Current status and technological advancements in adsorption refrigeration systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
- Banerjee, Avishek & Tierney, Michael. J. & Thorpe, Roger. N., 2012. "Thermoeconomics, cost benefit analysis, and a novel way of dealing with revenue generating dissipative units applied to candidate decentralised energy systems for Indian rural villages," Energy, Elsevier, vol. 43(1), pages 477-488.
- Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
- Allouhi, A. & Kousksou, T. & Jamil, A. & Bruel, P. & Mourad, Y. & Zeraouli, Y., 2015. "Solar driven cooling systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 159-181.
More about this item
Keywords
Renewable Energy Sources; Silica Gel-Water; Mass Recovery; Adsorption Chiller; Cooling Capacity and Coefficient of Performance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adm:journl:v:8:y:2019:i:12:p:9-14. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Staff ijSciences (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.