IDEAS home Printed from https://ideas.repec.org/a/aag/wpaper/v23y2019i2p1-14.html
   My bibliography  Save this article

Mathematical Modelling Of Decision-Making Application To Investment

Author

Listed:
  • Atefeh Hasan-Zadeh

    (Fouman Faculty of Engineering, College of Engineering, University of Tehran, Iran)

Abstract

In this paper, the mathematical modelling of decision-making problems based on probabilistic graphical models is presented. The models, in addition to random variables, also include decision and profit variables. The proposed decision models contain one or more decisions and their purpose is to assist the decision maker in choosing the best decision under conditions of uncertainty. The techniques used include modelling and evaluating decision trees, as well as evaluating, modelling and presenting the algorithm of influence diagrams (as the expansion of the Bayesian networks) to show the communication structure of the problem and thus provide a coherent presentation with an effective evaluation. The limited memory influence diagram and dynamic decision networks (as a dynamic Bayesian network) have also been developed to avoid the limitations of the influence diagram limitation. An application of the exposed models is presented in investment decision-making.

Suggested Citation

  • Atefeh Hasan-Zadeh, 2019. "Mathematical Modelling Of Decision-Making Application To Investment," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(2), pages 1-14, June.
  • Handle: RePEc:aag:wpaper:v:23:y:2019:i:2:p:1-14
    as

    Download full text from publisher

    File URL: https://iads.site/Mathematical-Modelling-of-Decision-Making-Application-to-Investment
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steffen L. Lauritzen & Dennis Nilsson, 2001. "Representing and Solving Decision Problems with Limited Information," Management Science, INFORMS, vol. 47(9), pages 1235-1251, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jannie Sønderkær Nielsen & John Dalsgaard Sørensen, 2014. "Methods for Risk-Based Planning of O&M of Wind Turbines," Energies, MDPI, vol. 7(10), pages 1-20, October.
    2. Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
    3. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    4. Julia Mortera & Paola Vicard & Cecilia Vergari, 2012. "Object-Oriented Bayesian Networks for a Decision Support System," Departmental Working Papers of Economics - University 'Roma Tre' 0144, Department of Economics - University Roma Tre.
    5. Erik Jørgensen & Anders Kristensen & Dennis Nilsson, 2014. "Markov Limid processes for representing and solving renewal problems," Annals of Operations Research, Springer, vol. 219(1), pages 63-84, August.
    6. Yijing Li & Prakash P. Shenoy, 2012. "A Framework for Solving Hybrid Influence Diagrams Containing Deterministic Conditional Distributions," Decision Analysis, INFORMS, vol. 9(1), pages 55-75, March.
    7. Shoshana Anily & Abraham Grosfeld-Nir, 2006. "An Optimal Lot-Sizing and Offline Inspection Policy in the Case of Nonrigid Demand," Operations Research, INFORMS, vol. 54(2), pages 311-323, April.
    8. Abraham Grosfeld‐Nir & Eyal Cohen & Yigal Gerchak, 2007. "Production to order and off‐line inspection when the production process is partially observable," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 845-858, December.
    9. Finn Jensen & Thomas Nielsen, 2013. "Probabilistic decision graphs for optimization under uncertainty," Annals of Operations Research, Springer, vol. 204(1), pages 223-248, April.
    10. Barry R. Cobb, 2007. "Influence Diagrams with Continuous Decision Variables and Non-Gaussian Uncertainties," Decision Analysis, INFORMS, vol. 4(3), pages 136-155, September.
    11. Salo, Ahti & Andelmin, Juho & Oliveira, Fabricio, 2022. "Decision programming for mixed-integer multi-stage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(2), pages 550-565.
    12. Vincenzo Butticè & Carlotta Orsenigo & Mike Wright, 2018. "The effect of information asymmetries on serial crowdfunding and campaign success," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 45(2), pages 143-173, June.
    13. Francisco Javier Díez & Manuel Arias & Jorge Pérez-Martín & Manuel Luque, 2022. "Teaching Probabilistic Graphical Models with OpenMarkov," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
    14. Apiruk Detwarasiti & Ross D. Shachter, 2005. "Influence Diagrams for Team Decision Analysis," Decision Analysis, INFORMS, vol. 2(4), pages 207-228, December.
    15. Misuri, Alessio & Khakzad, Nima & Reniers, Genserik & Cozzani, Valerio, 2019. "A Bayesian network methodology for optimal security management of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    16. Cobb, Barry R. & Shenoy, Prakash P., 2008. "Decision making with hybrid influence diagrams using mixtures of truncated exponentials," European Journal of Operational Research, Elsevier, vol. 186(1), pages 261-275, April.
    17. Koller, Daphne & Milch, Brian, 2003. "Multi-agent influence diagrams for representing and solving games," Games and Economic Behavior, Elsevier, vol. 45(1), pages 181-221, October.
    18. Borgonovo, Emanuele & Tonoli, Fabio, 2014. "Decision-network polynomials and the sensitivity of decision-support models," European Journal of Operational Research, Elsevier, vol. 239(2), pages 490-503.
    19. Chernonog, Tatyana & Avinadav, Tal, 2016. "A two-state partially observable Markov decision process with three actionsAuthor-Name: Ben-Zvi, Tal," European Journal of Operational Research, Elsevier, vol. 254(3), pages 957-967.
    20. Barry R. Cobb, 2021. "Statistical Process Control for the Number of Defectives with Limited Memory," Decision Analysis, INFORMS, vol. 18(3), pages 203-217, September.

    More about this item

    Keywords

    Decision models; Decision tree; Influence diagram; Bayesian network; Investment decision-making;
    All these keywords.

    JEL classification:

    • B16 - Schools of Economic Thought and Methodology - - History of Economic Thought through 1925 - - - Quantitative and Mathematical
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aag:wpaper:v:23:y:2019:i:2:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Vincent Pan (email available below). General contact details of provider: https://edirc.repec.org/data/dfasitw.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.