IDEAS home Printed from https://ideas.repec.org/a/inm/ordeca/v18y2021i3p203-217.html
   My bibliography  Save this article

Statistical Process Control for the Number of Defectives with Limited Memory

Author

Listed:
  • Barry R. Cobb

    (Department of Economics and Business, Virginia Military Institute, Lexington, Virginia 24450)

Abstract

A limited memory influence diagram model is utilized for statistical process control in a system where qualitative data on the number of defectives in a sample is available in each period of a finite production horizon. Based on the number of defective units observed, a decision is made on whether to stop the process and repair an assignable cause of variation. The model has no requirement to maintain the history of sample results and corrective actions taken in previous sampling periods. Despite the limited memory of process history, the nature of the decision rule and solution algorithm result in quality-related costs that are comparable to those of existing methods for Bayesian quality control with information on number of defectives. When sampling interval and sample size can be selected as design parameters for a system with a fixed time between scheduled maintenance, the limited memory influence diagram model can be constructed to provide similar costs with reduced computational requirement as compared with a partially observed Markov decision process technique.

Suggested Citation

  • Barry R. Cobb, 2021. "Statistical Process Control for the Number of Defectives with Limited Memory," Decision Analysis, INFORMS, vol. 18(3), pages 203-217, September.
  • Handle: RePEc:inm:ordeca:v:18:y:2021:i:3:p:203-217
    DOI: 10.1287/deca.2021.0431
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/deca.2021.0431
    Download Restriction: no

    File URL: https://libkey.io/10.1287/deca.2021.0431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joel M. Calabrese, 1995. "Bayesian Process Control for Attributes," Management Science, INFORMS, vol. 41(4), pages 637-645, April.
    2. Steffen L. Lauritzen & Dennis Nilsson, 2001. "Representing and Solving Decision Problems with Limited Information," Management Science, INFORMS, vol. 47(9), pages 1235-1251, September.
    3. Imen Kooli & Mohamed Limam, 2015. "Economic design of attribute np control charts using a variable sampling policy," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(4), pages 483-494, July.
    4. Ross D. Shachter, 1986. "Evaluating Influence Diagrams," Operations Research, INFORMS, vol. 34(6), pages 871-882, December.
    5. Phillip L. Carter, 1972. "A Bayesian Approach to Quality Control," Management Science, INFORMS, vol. 18(11), pages 647-655, July.
    6. Tagaras, George, 1996. "Dynamic control charts for finite production runs," European Journal of Operational Research, Elsevier, vol. 91(1), pages 38-55, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nenes, George & Tagaras, George, 2007. "The economically designed two-sided Bayesian control chart," European Journal of Operational Research, Elsevier, vol. 183(1), pages 263-277, November.
    2. Shoshana Anily & Abraham Grosfeld-Nir, 2006. "An Optimal Lot-Sizing and Offline Inspection Policy in the Case of Nonrigid Demand," Operations Research, INFORMS, vol. 54(2), pages 311-323, April.
    3. Fernandez del Pozo, J. A. & Bielza, C. & Gomez, M., 2005. "A list-based compact representation for large decision tables management," European Journal of Operational Research, Elsevier, vol. 160(3), pages 638-662, February.
    4. Naderkhani, Farnoosh & Makis, Viliam, 2016. "Economic design of multivariate Bayesian control chart with two sampling intervals," International Journal of Production Economics, Elsevier, vol. 174(C), pages 29-42.
    5. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    6. Borgonovo, Emanuele & Tonoli, Fabio, 2014. "Decision-network polynomials and the sensitivity of decision-support models," European Journal of Operational Research, Elsevier, vol. 239(2), pages 490-503.
    7. Barry R. Cobb, 2007. "Influence Diagrams with Continuous Decision Variables and Non-Gaussian Uncertainties," Decision Analysis, INFORMS, vol. 4(3), pages 136-155, September.
    8. Mahfuza Khatun & Michael B.C. Khoo & Sajal Saha & Philippe Castagliola, 2021. "A new distribution‐free adaptive sample size control chart for a finite production horizon and its application in monitoring fill volume of soft drink beverage bottles," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 37(1), pages 84-97, January.
    9. Misuri, Alessio & Khakzad, Nima & Reniers, Genserik & Cozzani, Valerio, 2019. "A Bayesian network methodology for optimal security management of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Koller, Daphne & Milch, Brian, 2003. "Multi-agent influence diagrams for representing and solving games," Games and Economic Behavior, Elsevier, vol. 45(1), pages 181-221, October.
    11. George Tagaras & Yiannis Nikolaidis, 2002. "Comparing the Effectiveness of Various Bayesian X̄ Control Charts," Operations Research, INFORMS, vol. 50(5), pages 878-888, October.
    12. Makis, Viliam, 2009. "Multivariate Bayesian process control for a finite production run," European Journal of Operational Research, Elsevier, vol. 194(3), pages 795-806, May.
    13. Erik Jørgensen & Anders Kristensen & Dennis Nilsson, 2014. "Markov Limid processes for representing and solving renewal problems," Annals of Operations Research, Springer, vol. 219(1), pages 63-84, August.
    14. Salo, Ahti & Andelmin, Juho & Oliveira, Fabricio, 2022. "Decision programming for mixed-integer multi-stage optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(2), pages 550-565.
    15. Francisco Javier Díez & Manuel Arias & Jorge Pérez-Martín & Manuel Luque, 2022. "Teaching Probabilistic Graphical Models with OpenMarkov," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
    16. Viliam Makis, 2008. "Multivariate Bayesian Control Chart," Operations Research, INFORMS, vol. 56(2), pages 487-496, April.
    17. Cobb, Barry R. & Shenoy, Prakash P., 2008. "Decision making with hybrid influence diagrams using mixtures of truncated exponentials," European Journal of Operational Research, Elsevier, vol. 186(1), pages 261-275, April.
    18. Tagaras, George, 2017. "New indices for the evaluation of the statistical properties of Bayesian x¯ control charts for short runsAuthor-Name: Nikolaidis, Yiannis," European Journal of Operational Research, Elsevier, vol. 259(1), pages 280-292.
    19. Abraham Grosfeld‐Nir & Eyal Cohen & Yigal Gerchak, 2007. "Production to order and off‐line inspection when the production process is partially observable," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(8), pages 845-858, December.
    20. Finn Jensen & Thomas Nielsen, 2013. "Probabilistic decision graphs for optimization under uncertainty," Annals of Operations Research, Springer, vol. 204(1), pages 223-248, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ordeca:v:18:y:2021:i:3:p:203-217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.