IDEAS home Printed from https://ideas.repec.org/r/wuu/wpaper/hsc1102.html
   My bibliography  Save this item

Efficient estimation of Markov regime-switching models: An application to electricity spot prices

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Maryniak, Paweł & Trück, Stefan & Weron, Rafał, 2019. "Carbon pricing and electricity markets — The case of the Australian Clean Energy Bill," Energy Economics, Elsevier, vol. 79(C), pages 45-58.
  2. Joanna Janczura & Rafal Weron, 2012. "Inference for Markov-regime switching models of electricity spot prices," HSC Research Reports HSC/12/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  3. Stephen Machin & Olivier Marie & Sunčica Vujić, 2012. "Youth Crime and Education Expansion," German Economic Review, Verein für Socialpolitik, vol. 13(4), pages 366-384, November.
  4. He, Xin-Jiang & Zhu, Song-Ping, 2017. "How should a local regime-switching model be calibrated?," Journal of Economic Dynamics and Control, Elsevier, vol. 78(C), pages 149-163.
  5. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
  6. Eichler, M. & Türk, D., 2013. "Fitting semiparametric Markov regime-switching models to electricity spot prices," Energy Economics, Elsevier, vol. 36(C), pages 614-624.
  7. Arvesen, Ø. & Medbø, V. & Fleten, S.-E. & Tomasgard, A. & Westgaard, S., 2013. "Linepack storage valuation under price uncertainty," Energy, Elsevier, vol. 52(C), pages 155-164.
  8. Farshid Mehrdoust & Idin Noorani, 2023. "Valuation of Spark-Spread Option Written on Electricity and Gas Forward Contracts Under Two-Factor Models with Non-Gaussian Lévy Processes," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 807-853, February.
  9. Sergei Kulakov, 2020. "X-Model: Further Development and Possible Modifications," Forecasting, MDPI, vol. 2(1), pages 1-16, February.
  10. Ida Bakke & Stein-Erik Fleten & Lars Ivar Hagfors & Verena Hagspiel & Beate Norheim & Sonja Wogrin, 2016. "Investment in electric energy storage under uncertainty: a real options approach," Computational Management Science, Springer, vol. 13(3), pages 483-500, July.
  11. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
  12. Gerster, Andreas, 2016. "Negative price spikes at power markets: The role of energy policy," Ruhr Economic Papers 636, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  13. Inchauspe, Julian & Li, Jun & Park, Jason, 2020. "Seasonal patterns of global oil consumption: Implications for long term energy policy," Journal of Policy Modeling, Elsevier, vol. 42(3), pages 536-556.
  14. Stéphane Goutte & Benteng Zou, 2012. "Continuous time regime switching model applied to foreign exchange rate," Working Papers hal-00643900, HAL.
  15. Joanna Janczura & Rafał Weron, 2013. "Goodness-of-fit testing for the marginal distribution of regime-switching models with an application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(3), pages 239-270, July.
  16. Janczura, Joanna & Weron, Rafal, 2010. "Goodness-of-fit testing for regime-switching models," MPRA Paper 22871, University Library of Munich, Germany.
  17. Ziel, Florian & Steinert, Rick, 2016. "Electricity price forecasting using sale and purchase curves: The X-Model," Energy Economics, Elsevier, vol. 59(C), pages 435-454.
  18. Andreas Gerster, 2016. "Negative price spikes at power markets: the role of energy policy," Journal of Regulatory Economics, Springer, vol. 50(3), pages 271-289, December.
  19. Antonio Bello & Javier Reneses & Antonio Muñoz, 2016. "Medium-Term Probabilistic Forecasting of Extremely Low Prices in Electricity Markets: Application to the Spanish Case," Energies, MDPI, vol. 9(3), pages 1-27, March.
  20. Eichler, M. & Türk, D.D.T., 2012. "Fitting semiparametric Markov regime-switching models to electricity spot prices," Research Memorandum 035, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  21. Florian Ziel & Rick Steinert, 2015. "Electricity Price Forecasting using Sale and Purchase Curves: The X-Model," Papers 1509.00372, arXiv.org, revised Aug 2016.
  22. Pawe³ Bieñkowski & Krzysztof Burnecki & Joanna Janczura & Rafal Weron & Bart³omiej Zubrzak, 2012. "A new method for automated noise cancellation in electromagnetic field measurement," HSC Research Reports HSC/12/05, Hugo Steinhaus Center, Wroclaw University of Technology.
  23. Evarest Emmanuel & Berntsson Fredrik & Singull Martin & Yang Xiangfeng, 2018. "Weather derivatives pricing using regime switching model," Monte Carlo Methods and Applications, De Gruyter, vol. 24(1), pages 13-27, March.
  24. Weron, Rafał & Zator, Michał, 2015. "A note on using the Hodrick–Prescott filter in electricity markets," Energy Economics, Elsevier, vol. 48(C), pages 1-6.
  25. Ojea Ferreiro, Javier, 2020. "Disentangling the role of the exchange rate in oil-related scenarios for the European stock market," Energy Economics, Elsevier, vol. 89(C).
  26. Joanna Janczura & Sebastian Orzel & Agnieszka Wylomanska, 2011. "Subordinated alpha-stable Ornstein-Uhlenbeck process as a tool for financial data description," HSC Research Reports HSC/11/03, Hugo Steinhaus Center, Wroclaw University of Technology.
  27. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
  28. Lindström, Erik & Norén, Vicke & Madsen, Henrik, 2015. "Consumption management in the Nord Pool region: A stability analysis," Applied Energy, Elsevier, vol. 146(C), pages 239-246.
  29. Loi, Tian Sheng Allan & Ng, Jia Le, 2018. "Anticipating electricity prices for future needs – Implications for liberalised retail markets," Applied Energy, Elsevier, vol. 212(C), pages 244-264.
  30. Joanna Janczura, 2012. "Pricing electricity derivatives within a Markov regime-switching model," Papers 1203.5442, arXiv.org.
  31. Malika Hamadi & Andreas Heinen, 2011. "Ownership Structure and Firm Performance : Evidence from a non-parametric panel," DEM Discussion Paper Series 11-16, Department of Economics at the University of Luxembourg.
  32. Goutte, Stéphane, 2014. "Conditional Markov regime switching model applied to economic modelling," Economic Modelling, Elsevier, vol. 38(C), pages 258-269.
  33. Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2013. "Modeling and forecasting of the long-term seasonal component of the EEX and Nord Pool spot prices," HSC Research Reports HSC/13/02, Hugo Steinhaus Center, Wroclaw University of Technology.
  34. Emanuele Fabbiani & Andrea Marziali & Giuseppe De Nicolao, 2018. "Fast calibration of two-factor models for energy option pricing," Papers 1809.03941, arXiv.org, revised Dec 2020.
  35. Pawel Maryniak & Stefan Trueck & Rafal Weron, 2016. "Carbon pricing, forward risk premiums and pass-through rates in Australian electricity futures markets," HSC Research Reports HSC/16/10, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  36. Vika Koban, 2017. "The impact of market coupling on Hungarian and Romanian electricity markets: Evidence from the regime-switching model," Energy & Environment, , vol. 28(5-6), pages 621-638, September.
  37. Monika Kośko & Marta Kwiecień & Joanna Stempińska, 2016. "Przełącznikowe modele Markowa (MS) – charakterystyka i sposoby zastosowań w badaniach ekonomicznych," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 40, pages 479-490.
  38. Joanna Janczura, 2014. "Pricing electricity derivatives within a Markov regime-switching model: a risk premium approach," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(1), pages 1-30, February.
  39. Kai Zheng & Yuying Li & Weidong Xu, 2021. "Regime switching model estimation: spectral clustering hidden Markov model," Annals of Operations Research, Springer, vol. 303(1), pages 297-319, August.
  40. Maddalena Cavicchioli, 2021. "OLS Estimation of Markov switching VAR models: asymptotics and application to energy use," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 431-449, September.
  41. Janczura, Joanna & Weron, Rafal, 2010. "An empirical comparison of alternate regime-switching models for electricity spot prices," Energy Economics, Elsevier, vol. 32(5), pages 1059-1073, September.
  42. Samet G nay, 2015. "Markov Regime Switching Generalized Autoregressive Conditional Heteroskedastic Model and Volatility Modeling for Oil Returns," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 979-985.
  43. Štěpán Kratochvíl & Oldřich Starý, 2013. "Predicting the Prices of Electricity Derivatives on the Energy Exchange," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2013(6), pages 65-81.
  44. Lindström, Erik & Regland, Fredrik, 2012. "Modeling extreme dependence between European electricity markets," Energy Economics, Elsevier, vol. 34(4), pages 899-904.
  45. Gaurav Kapoor & Nuttanan Wichitaksorn & Wenjun Zhang, 2023. "Analyzing and forecasting electricity price using regime‐switching models: The case of New Zealand market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2011-2026, December.
  46. Erik Lindström & Fredric Regland, 2012. "Independent Spike Models: Estimation and Validation," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 62(2), pages 180-196, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.