IDEAS home Printed from https://ideas.repec.org/a/ags/jrapmc/339916.html
   My bibliography  Save this article

Forecasting MISO Electricity Prices: A Threshold Autoregressive Approach with Load Data

Author

Listed:
  • Tasneem, Faria
  • Waters, George

Abstract

Electricity price dynamics for the Illinois market are examined by estimating eleven different threshold autoregressive models and comparing according to t and forecasting performance. The threshold is endogenous and depends on load data in three of the cases. A theoretical model demonstrates that supply constraints could explain price spikes and that prices would display less persistence in those cases. Estimation results confirm the presence of non-linearity in the evolution of prices. However, inclusion of the load data does not improve performance, which provides evidence against this hypothesis. The model where the threshold depends on the change in the past price is best.

Suggested Citation

  • Tasneem, Faria & Waters, George, 2017. "Forecasting MISO Electricity Prices: A Threshold Autoregressive Approach with Load Data," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 48(3), October.
  • Handle: RePEc:ags:jrapmc:339916
    DOI: 10.22004/ag.econ.339916
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/339916/files/Tasneem.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.339916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George William Evans, 2001. "Expectations in Macroeconomics Adaptive versus Eductive Learning," Revue économique, Presses de Sciences-Po, vol. 52(3), pages 573-582.
    2. Janczura, Joanna & Weron, Rafal, 2010. "An empirical comparison of alternate regime-switching models for electricity spot prices," Energy Economics, Elsevier, vol. 32(5), pages 1059-1073, September.
    3. Payne, James E., 2009. "On the Dynamics of Energy Consumption and Employment in Illinois," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 39(2), pages 1-5.
    4. Bowden, Nicholas & Payne, James E., 2008. "Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models," Energy Economics, Elsevier, vol. 30(6), pages 3186-3197, November.
    5. Carlson, J. Lon & Loomis, David, 2008. "An Assessment of the Impact of Deregulation on the Relative Price of Electricity in Illinois," The Electricity Journal, Elsevier, vol. 21(6), pages 60-70, July.
    6. B. Ricky Rambharat & Anthony E. Brockwell & Duane J. Seppi, 2005. "A threshold autoregressive model for wholesale electricity prices," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(2), pages 287-299, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Stephen Machin & Olivier Marie & Sunčica Vujić, 2012. "Youth Crime and Education Expansion," German Economic Review, Verein für Socialpolitik, vol. 13(4), pages 366-384, November.
    3. Eichler, M. & Türk, D., 2013. "Fitting semiparametric Markov regime-switching models to electricity spot prices," Energy Economics, Elsevier, vol. 36(C), pages 614-624.
    4. Luigi Grossi & Fany Nan, 2018. "The influence of renewables on electricity price forecasting: a robust approach," Working Papers 2018/10, Institut d'Economia de Barcelona (IEB).
    5. Niu, Shilei & Insley, Margaret, 2016. "An options pricing approach to ramping rate restrictions at hydro power plants," Journal of Economic Dynamics and Control, Elsevier, vol. 63(C), pages 25-52.
    6. Eichler, M. & Grothe, O. & Manner, H. & Türk, D.D.T., 2012. "Modeling spike occurrences in electricity spot prices for forecasting," Research Memorandum 029, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. Carlo Lucheroni, 2012. "A hybrid SETARX model for spikes in tight electricity markets," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 22(1), pages 13-49.
    8. Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
    9. Sirin, Selahattin Murat & Camadan, Ercument & Erten, Ibrahim Etem & Zhang, Alex Hongliang, 2023. "Market failure or politics? Understanding the motives behind regulatory actions to address surging electricity prices," Energy Policy, Elsevier, vol. 180(C).
    10. Luigi Grossi & Fany Nan, 2017. "Forecasting electricity prices through robust nonlinear models," Working Papers 06/2017, University of Verona, Department of Economics.
    11. Godin, Frédéric & Ibrahim, Zinatu, 2021. "An analysis of electricity congestion price patterns in North America," Energy Economics, Elsevier, vol. 102(C).
    12. Eichler, M. & Türk, D.D.T., 2012. "Fitting semiparametric Markov regime-switching models to electricity spot prices," Research Memorandum 035, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    13. Jason Lennard & Finn Meinecke & Solomos Solomou, 2023. "Measuring inflation expectations in interwar Britain," Economic History Review, Economic History Society, vol. 76(3), pages 844-870, August.
    14. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    15. Hommes, Cars & Huber, Stefanie J. & Minina, Daria & Salle, Isabelle, 2024. "Learning in a complex world: Insights from an OLG lab experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 220(C), pages 813-837.
    16. Mariam Camarero & María Dolores Gadea-Rivas & Ana Gómez-Loscos & Cecilio Tamarit, 2019. "External imbalances and recoveries," Working Papers 1912, Department of Applied Economics II, Universidad de Valencia.
    17. YiLi Chien & In-Koo Cho & B. Ravikumar, 2021. "Stability and Equilibrium Selection in Learning Models: A Note of Caution," Review, Federal Reserve Bank of St. Louis, vol. 103(4), pages 477-488, October.
    18. Berardi, Michele, 2007. "Heterogeneity and misspecifications in learning," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3203-3227, October.
    19. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.
    20. Klaus Adam & Albert Marcet & Juan Pablo Nicolini, 2016. "Stock Market Volatility and Learning," Journal of Finance, American Finance Association, vol. 71(1), pages 33-82, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jrapmc:339916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/mcrsaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.