IDEAS home Printed from https://ideas.repec.org/a/eee/jpolmo/v42y2020i3p536-556.html
   My bibliography  Save this article

Seasonal patterns of global oil consumption: Implications for long term energy policy

Author

Listed:
  • Inchauspe, Julian
  • Li, Jun
  • Park, Jason

Abstract

The dynamic evolution of the seasonal patterns in world oil consumption is dictated by complex interactions between regional consumers. Although this global pattern was stable and predictable in the past, recently it has undergone dramatic changes that have not been well understood yet. This paper contributes to literature on oil consumption behaviours by analysing the counter-balance of ‘coincident’ and ‘counter-directional’ regional seasonal patterns that have time-varying amplitude relative to their longer-term trends. It is shown that the recent global seasonal changes have been mainly driven by long-run demand trends in fast-growing emerging markets and, to a lesser extent, by idiosyncratic changes in regions’ seasonal amplitude. Our analysis is relevant to energy policy in general as both global and regional oil consumption seasonality have important implications for oil pricing, investment decisions, hedging, geopolitics and energy security.

Suggested Citation

  • Inchauspe, Julian & Li, Jun & Park, Jason, 2020. "Seasonal patterns of global oil consumption: Implications for long term energy policy," Journal of Policy Modeling, Elsevier, vol. 42(3), pages 536-556.
  • Handle: RePEc:eee:jpolmo:v:42:y:2020:i:3:p:536-556
    DOI: 10.1016/j.jpolmod.2019.12.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0161893820300090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jpolmod.2019.12.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luís Aguiar-Conraria & Maria Soares, 2011. "Oil and the macroeconomy: using wavelets to analyze old issues," Empirical Economics, Springer, vol. 40(3), pages 645-655, May.
    2. Vacha, Lukas & Barunik, Jozef, 2012. "Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis," Energy Economics, Elsevier, vol. 34(1), pages 241-247.
    3. Cifter, Atilla & Ozun, Alper, 2007. "Multi-scale Causality between Energy Consumption and GNP in Emerging Markets: Evidence from Turkey," MPRA Paper 2483, University Library of Munich, Germany.
    4. Mirantes, Andrés García & Población, Javier & Serna, Gregorio, 2013. "The stochastic seasonal behavior of energy commodity convenience yields," Energy Economics, Elsevier, vol. 40(C), pages 155-166.
    5. Gately, Dermot & Al-Yousef, Nourah & Al-Sheikh, Hamad M.H., 2012. "The rapid growth of domestic oil consumption in Saudi Arabia and the opportunity cost of oil exports foregone," Energy Policy, Elsevier, vol. 47(C), pages 57-68.
    6. Zhaoyang Kong & Xiucheng Dong & Zhongbing Zhou, 2015. "Seasonal Imbalances in Natural Gas Imports in Major Northeast Asian Countries: Variations, Reasons, Outlooks and Countermeasures," Sustainability, MDPI, vol. 7(2), pages 1-22, February.
    7. Franses, Philip Hans & Kunst, Robert M., 2007. "Analyzing a panel of seasonal time series: Does seasonality in industrial production converge across Europe?," Economic Modelling, Elsevier, vol. 24(6), pages 954-968, November.
    8. Engle, R. F. & Granger, C. W. J. & Hylleberg, S. & Lee, H. S., 1993. "The Japanese consumption function," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 275-298.
    9. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    10. Haven, Emmanuel & Liu, Xiaoquan & Shen, Liya, 2012. "De-noising option prices with the wavelet method," European Journal of Operational Research, Elsevier, vol. 222(1), pages 104-112.
    11. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    12. Khalfaoui, R. & Boutahar, M. & Boubaker, H., 2015. "Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis," Energy Economics, Elsevier, vol. 49(C), pages 540-549.
    13. Kramer, Charles, 1994. "Macroeconomic Seasonality and the January Effect," Journal of Finance, American Finance Association, vol. 49(5), pages 1883-1891, December.
    14. Aloui, Chaker & Jammazi, Rania, 2015. "Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 62-86.
    15. Beenstock, Michael & Goldin, Ephraim & Nabot, Dan, 1999. "The demand for electricity in Israel," Energy Economics, Elsevier, vol. 21(2), pages 168-183, April.
    16. Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon, 2001. "Differentiating intraday seasonalities through wavelet multi-scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 289(3), pages 543-556.
    17. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    18. Michael P. Clements & Reinhard Madlener, 1999. "Seasonality, Cointegration, and Forecasting UK Residential Energy Demand," Scottish Journal of Political Economy, Scottish Economic Society, vol. 46(2), pages 185-206, May.
    19. Naccache, Théo, 2011. "Oil price cycles and wavelets," Energy Economics, Elsevier, vol. 33(2), pages 338-352, March.
    20. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    21. Reboredo, Juan C. & Rivera-Castro, Miguel A., 2013. "A wavelet decomposition approach to crude oil price and exchange rate dependence," Economic Modelling, Elsevier, vol. 32(C), pages 42-57.
    22. Zhou, Zhong-bing & Dong, Xiu-cheng, 2012. "Analysis about the seasonality of China's crude oil import based on X-12-ARIMA," Energy, Elsevier, vol. 42(1), pages 281-288.
    23. Sanchez-Ubeda, Eugenio Fco. & Berzosa, Ana, 2007. "Modeling and forecasting industrial end-use natural gas consumption," Energy Economics, Elsevier, vol. 29(4), pages 710-742, July.
    24. Michael Ye & John Zyren & Joanne Shore, 2003. "Short-run elasticity of relative demand for petroleum inventory," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 9(1), pages 87-87, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo Andrea Bollino & Philipp Galkin, 2021. "Energy Security and Portfolio Diversification: Conventional and Novel Perspectives," Energies, MDPI, vol. 14(14), pages 1-24, July.
    2. Martin Beer & Radim Rybár & Jana Rybárová & Andrea Seňová & Vojtech Ferencz, 2021. "Numerical Analysis of Concentrated Solar Heaters for Segmented Heat Accumulators," Energies, MDPI, vol. 14(14), pages 1-20, July.
    3. Loureiro, Jose Roberto & Inchauspe, Julian & Aguilera, Roberto F., 2023. "World regional natural gas prices: Convergence, divergence or what? New evidence," Journal of Commodity Markets, Elsevier, vol. 32(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ftiti, Zied & Guesmi, Khaled & Abid, Ilyes, 2016. "Oil price and stock market co-movement: What can we learn from time-scale approaches?," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 266-280.
    2. Rahim, Adam Mohamed & Masih, Mansur, 2016. "Portfolio diversification benefits of Islamic investors with their major trading partners: Evidence from Malaysia based on MGARCH-DCC and wavelet approaches," Economic Modelling, Elsevier, vol. 54(C), pages 425-438.
    3. Luís Aguiar-Conraria & Teresa Maria Rodrigues & Maria Joana Soares, 2014. "Oil Shocks and the Euro as an Optimum Currency Area," Dynamic Modeling and Econometrics in Economics and Finance, in: Marco Gallegati & Willi Semmler (ed.), Wavelet Applications in Economics and Finance, edition 127, pages 143-156, Springer.
    4. Farouk, Faizal & Masih, Mansur, 2016. "Are there profit (returns) in Shariah-compliant exchange traded funds? The multiscale propensity," Research in International Business and Finance, Elsevier, vol. 38(C), pages 360-375.
    5. Yildirim, Ramazan & Masih, Mansur, 2018. "Investigating International Portfolio Diversification Opportunities for the Asian Islamic Stock Market Investors," MPRA Paper 90281, University Library of Munich, Germany.
    6. Dong, Minyi & Chang, Chun-Ping & Gong, Qiang & Chu, Yin, 2019. "Revisiting global economic activity and crude oil prices: A wavelet analysis," Economic Modelling, Elsevier, vol. 78(C), pages 134-149.
    7. Power, Gabriel J. & Eaves, James & Turvey, Calum & Vedenov, Dmitry, 2017. "Catching the curl: Wavelet thresholding improves forward curve modelling," Economic Modelling, Elsevier, vol. 64(C), pages 312-321.
    8. Qunwei Wang & Xingyu Dai & Dequn Zhou, 2020. "Dynamic Correlation and Risk Contagion Between “Black” Futures in China: A Multi-scale Variational Mode Decomposition Approach," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1117-1150, April.
    9. Tiwari, Aviral Kumar & Nasreen, Samia & Shahbaz, Muhammad & Hammoudeh, Shawkat, 2020. "Time-frequency causality and connectedness between international prices of energy, food, industry, agriculture and metals," Energy Economics, Elsevier, vol. 85(C).
    10. He, Chengying & Huang, Ke & Lin, Jianwu & Wang, Tianqi & Zhang, Zuominyang, 2023. "Explain systemic risk of commodity futures market by dynamic network," International Review of Financial Analysis, Elsevier, vol. 88(C).
    11. Ali, Hakim & Masih, Mansur, 2016. "Evidence of cross-country portfolio diversification benefits: The case of Saudi Arabia," MPRA Paper 72180, University Library of Munich, Germany.
    12. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    13. Boying Li & Chun-Ping Chang & Yin Chu & Bo Sui, 2020. "Oil prices and geopolitical risks: What implications are offered via multi-domain investigations?," Energy & Environment, , vol. 31(3), pages 492-516, May.
    14. Herrerias, M.J., 2013. "Seasonal anomalies in electricity intensity across Chinese regions," Applied Energy, Elsevier, vol. 112(C), pages 1548-1557.
    15. Zhou, Zhong-bing & Dong, Xiu-cheng, 2012. "Analysis about the seasonality of China's crude oil import based on X-12-ARIMA," Energy, Elsevier, vol. 42(1), pages 281-288.
    16. Milan Bašta & Peter Molnár, 2019. "Long‐term dynamics of the VIX index and its tradable counterpart VXX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(3), pages 322-341, March.
    17. Bilgili, Faik & Mugaloglu, Erhan & Koçak, Emrah, 2018. "The impact of oil prices on CO2 emissions in China: A Wavelet coherence approach," MPRA Paper 90170, University Library of Munich, Germany.
    18. Chen, Qitong & Zhu, Huiming & Yu, Dongwei & Hau, Liya, 2022. "How does investor attention matter for crude oil prices and returns? Evidence from time-frequency quantile causality analysis," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    19. Dai, Xingyu & Wang, Qunwei & Zha, Donglan & Zhou, Dequn, 2020. "Multi-scale dependence structure and risk contagion between oil, gold, and US exchange rate: A wavelet-based vine-copula approach," Energy Economics, Elsevier, vol. 88(C).
    20. Chang, Chun-Ping & Lee, Chien-Chiang, 2015. "Do oil spot and futures prices move together?," Energy Economics, Elsevier, vol. 50(C), pages 379-390.

    More about this item

    Keywords

    Seasonality; Oil consumption; Regional and global pattern; Energy policy; Discrete wavelet transformation;
    All these keywords.

    JEL classification:

    • D4 - Microeconomics - - Market Structure, Pricing, and Design
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • R1 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jpolmo:v:42:y:2020:i:3:p:536-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505735 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.