My bibliography
Save this item
Measuring and forecasting S&P 500 index‐futures volatility using high‐frequency data
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Corbet, Shaen & Dunne, John James & Larkin, Charles, 2019. "Quantitative easing announcements and high-frequency stock market volatility: Evidence from the United States," Research in International Business and Finance, Elsevier, vol. 48(C), pages 321-334.
- Lyócsa, Štefan & Todorova, Neda, 2020. "Trading and non-trading period realized market volatility: Does it matter for forecasting the volatility of US stocks?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 628-645.
- Prayut Jain & Shashi Jain, 2019. "Can Machine Learning-Based Portfolios Outperform Traditional Risk-Based Portfolios? The Need to Account for Covariance Misspecification," Risks, MDPI, vol. 7(3), pages 1-27, July.
- Sévi, Benoît, 2014.
"Forecasting the volatility of crude oil futures using intraday data,"
European Journal of Operational Research, Elsevier, vol. 235(3), pages 643-659.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Post-Print hal-01463921, HAL.
- Benoît Sévi, 2014. "Forecasting the volatility of crude oil futures using intraday data," Working Papers 2014-53, Department of Research, Ipag Business School.
- Peter Reinhard Hansen & Asger Lunde, 2005. "A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 525-554.
- Birkelund, Ole Henrik & Haugom, Erik & Molnár, Peter & Opdal, Martin & Westgaard, Sjur, 2015. "A comparison of implied and realized volatility in the Nordic power forward market," Energy Economics, Elsevier, vol. 48(C), pages 288-294.
- Oleg Sokolinskiy & Dick van Dijk, 2011. "Forecasting Volatility with Copula-Based Time Series Models," Tinbergen Institute Discussion Papers 11-125/4, Tinbergen Institute.
- Castilla, Adolfo, 2015. "Proyecto LINK y Econometría de Alta Frecuencia: Las últimas aportaciones econométricas de Lawrence R. Klein /LINK Project and High Frequency Econometrics: Recent Econometric Contributions of Lawrence ," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 33, pages 421-450, Mayo.
- Linton, Oliver & Wu, Jianbin, 2020. "A coupled component DCS-EGARCH model for intraday and overnight volatility," Journal of Econometrics, Elsevier, vol. 217(1), pages 176-201.
- Wen Cheong, Chin & Hassan Shaari Mohd Nor, Abu & Isa, Zaidi, 2007. "Asymmetry and long-memory volatility: Some empirical evidence using GARCH," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 651-664.
- Ahoniemi, Katja & Lanne, Markku, 2010. "Realized volatility and overnight returns," Bank of Finland Research Discussion Papers 19/2010, Bank of Finland.
- Wen-Cheng Lu & Fang-Jun Lin, 2010. "An Empirical Study Of Volatility And Trading Volume Dynamics Using High-Frequency Data," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 4(3), pages 93-101.
- Li, Xingyi & Zakamulin, Valeriy, 2020. "The term structure of volatility predictability," International Journal of Forecasting, Elsevier, vol. 36(2), pages 723-737.
- BOUSALAM, Issam & HAMZAOUI, Moustapha & ZOUHAYR, Otman, 2016. "Forecasting Daily Stock Volatility Using GARCH-CJ Type Models with Continuous and Jump Variation," MPRA Paper 69636, University Library of Munich, Germany.
- Manabu Asai & Michael McAleer, 2017.
"Forecasting the volatility of Nikkei 225 futures,"
Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(11), pages 1141-1152, November.
- Manabu Asai & Michael McAleer, 2017. "Forecasting the volatility of Nikkei 225 futures," Documentos de Trabajo del ICAE 2017-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Asai, M. & McAleer, M.J., 2017. "Forecasting the Volatility of Nikkei 225 Futures," Econometric Institute Research Papers TI 2017-017/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Manabu Asai & Michael McAleer, 2017. "Forecasting the Volatility of Nikkei 225 Futures," Tinbergen Institute Discussion Papers 17-017/III, Tinbergen Institute.
- Ning, Cathy & Xu, Dinghai & Wirjanto, Tony S., 2015.
"Is volatility clustering of asset returns asymmetric?,"
Journal of Banking & Finance, Elsevier, vol. 52(C), pages 62-76.
- Cathy Ning & Dinghai Xu & Tony Wirjanto, 2014. "Is Volatility Clustering of Asset Returns Asymmetric?," Working Papers 050, Toronto Metropolitan University, Department of Economics.
- Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2023. "Discovering the drivers of stock market volatility in a data-rich world," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
- Michiel de Pooter & Martin Martens & Dick van Dijk, 2008.
"Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data—But Which Frequency to Use?,"
Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 199-229.
- Michiel de Pooter & Martin Martens & Dick van Dijk, 2005. "Predicting the Daily Covariance Matrix for S&P 100 Stocks using Intraday Data - But which Frequency to use?," Tinbergen Institute Discussion Papers 05-089/4, Tinbergen Institute, revised 03 Jan 2006.
- Marcelo Fernandes & Marco Aurélio Dos Santos Rocha, 0.
"Are price limits on futures markets that cool? Evidence from the Brazilian Mercantile and Futures Exchange,"
Journal of Financial Econometrics, Oxford University Press, vol. 5(2), pages 219-242.
- Marcelo Fernandes & Marco Aurélio dos Santos Rocha, 2006. "Are Price Limits on Futures Markets That Cool? Evidence from the Brazilian Mercantile and Futures Exchange," Working Papers 579, Queen Mary University of London, School of Economics and Finance.
- Fernandes, Marcelo & Rocha, Marco Aurélio dos Santos, 2006. "Are price limits on futures markets that cool?: evidence from the Brazilian Mercantile and Futures Exchange," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 630, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
- Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005.
"Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements,"
Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
- Siem Jan Koopman & Borus Jungbacker & Eugenie Hol, 2004. "Forecasting Daily Variability of the S&P 100 Stock Index using Historical, Realised and Implied Volatility Measurements," Tinbergen Institute Discussion Papers 04-016/4, Tinbergen Institute.
- Eugenie Hol & Siem Jan Koopman & Borus Jungbacker, 2004. "Forecasting daily variability of the S\&P 100 stock index using historical, realised and implied volatility measurements," Computing in Economics and Finance 2004 342, Society for Computational Economics.
- Sharma, Prateek & Vipul,, 2016. "Forecasting stock market volatility using Realized GARCH model: International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 59(C), pages 222-230.
- Degiannakis, Stavros, 2008. "Forecasting Vix," MPRA Paper 96307, University Library of Munich, Germany.
- Victor Bello Accioly & Beatriz Vaz de Melo Mendes, 2016. "Assessing the Impact of the Realized Range on the (E)GARCH Volatility: Evidence from Brazil," Brazilian Business Review, Fucape Business School, vol. 13(2), pages 1-26, March.
- Julien Chevallier & Bilel Sanhaji, 2023.
"Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices,"
Stats, MDPI, vol. 6(4), pages 1-32, December.
- Julien Chevallier & Bilel Sanhaji, 2023. "Jump-Robust Realized-GARCH-MIDAS-X Estimators for Bitcoin and Ethereum Volatility Indices," Post-Print halshs-04344131, HAL.
- repec:zbw:bofrdp:2010_019 is not listed on IDEAS
- Donggyu Kim & Minseok Shin & Yazhen Wang, 2023.
"Overnight GARCH-Itô Volatility Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1215-1227, October.
- Donggyu Kim & Minseok Shin & Yazhen Wang, 2021. "Overnight GARCH-It\^o Volatility Models," Papers 2102.13467, arXiv.org, revised Jun 2022.
- Ke Yang & Langnan Chen & Fengping Tian, 2015. "Realized Volatility Forecast of Stock Index Under Structural Breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(1), pages 57-82, January.
- Marius Matei & Xari Rovira & Núria Agell, 2019. "Bivariate Volatility Modeling with High-Frequency Data," Econometrics, MDPI, vol. 7(3), pages 1-15, September.
- Martin Martens & Dick van Dijk & Michiel de Pooter, 2004. "Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity," Tinbergen Institute Discussion Papers 04-067/4, Tinbergen Institute.
- Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
- Ahoniemi, Katja & Lanne, Markku, 2010. "Realized volatility and overnight returns," Research Discussion Papers 19/2010, Bank of Finland.
- Nishimura, Yusaku & Sun, Bianxia, 2021. "President’s Tweets, US-China economic conflict and stock market Volatility: Evidence from China and G5 countries," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Degiannakis, Stavros & Filis, George, 2023.
"Oil price assumptions for macroeconomic policy,"
Energy Economics, Elsevier, vol. 117(C).
- Degiannakis, Stavros & Filis, George, 2020. "Oil price assumptions for macroeconomic policy," MPRA Paper 100705, University Library of Munich, Germany.
- Stavros Degiannakis, 2008.
"ARFIMAX and ARFIMAX-TARCH realized volatility modeling,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1169-1180.
- Degiannakis, Stavros, 2008. "ARFIMAX and ARFIMAX-TARCH Realized Volatility Modeling," MPRA Paper 80465, University Library of Munich, Germany.
- Veiga, Helena, 2007. "The effect of realised volatility on stock returns risk estimates," DES - Working Papers. Statistics and Econometrics. WS ws076316, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
- Dhaene, Geert & Wu, Jianbin, 2020. "Incorporating overnight and intraday returns into multivariate GARCH volatility models," Journal of Econometrics, Elsevier, vol. 217(2), pages 471-495.
- Eugenie Hol & Siem Jan Koopman, 2002. "Stock Index Volatility Forecasting with High Frequency Data," Tinbergen Institute Discussion Papers 02-068/4, Tinbergen Institute.
- Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je, 2016. "Forecasting stock volatility using after-hour information: Evidence from the Australian Stock Exchange," Economic Modelling, Elsevier, vol. 52(PB), pages 592-608.
- Linlan Xiao, 2013. "Realized volatility forecasting: empirical evidence from stock market indices and exchange rates," Applied Financial Economics, Taylor & Francis Journals, vol. 23(1), pages 57-69, January.
- Alfeus, Mesias & Nikitopoulos, Christina Sklibosios, 2022. "Forecasting volatility in commodity markets with long-memory models," Journal of Commodity Markets, Elsevier, vol. 28(C).
- Johannes Stübinger & Sylvia Endres, 2018. "Pairs trading with a mean-reverting jump–diffusion model on high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1735-1751, October.
- Todorova, Neda & Souček, Michael, 2014. "Overnight information flow and realized volatility forecasting," Finance Research Letters, Elsevier, vol. 11(4), pages 420-428.
- Ke Yang & Langnan Chen, 2014. "Realized Volatility Forecast: Structural Breaks, Long Memory, Asymmetry, and Day-of-the-Week Effect," International Review of Finance, International Review of Finance Ltd., vol. 14(3), pages 345-392, September.
- Dimitrios P. Louzis & Spyros Xanthopoulos-Sisinis & Apostolos P. Refenes, 2012.
"Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility,"
Applied Economics, Taylor & Francis Journals, vol. 44(27), pages 3533-3550, September.
- Dimitrios Louzis & Spyros Xanthopoulos-Sisinis & Apostolos Refenes, 2011. "Stock index realized volatility forecasting in the presence of heterogeneous leverage effects and long range dependence in the volatility of realized volatility," Post-Print hal-00709559, HAL.
- Haugom, Erik & Westgaard, Sjur & Solibakke, Per Bjarte & Lien, Gudbrand, 2011. "Realized volatility and the influence of market measures on predictability: Analysis of Nord Pool forward electricity data," Energy Economics, Elsevier, vol. 33(6), pages 1206-1215.
- Torben G. Andersen & Luca Benzoni, 2008. "Realized volatility," Working Paper Series WP-08-14, Federal Reserve Bank of Chicago.
- Degiannakis, Stavros & Floros, Christos, 2010. "VIX Index in Interday and Intraday Volatility Models," MPRA Paper 96304, University Library of Munich, Germany.