My bibliography
Save this item
Are there Structural Breaks in Realized Volatility?
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bauwens, Luc & Rombouts, Jeroen V.K., 2012.
"On marginal likelihood computation in change-point models,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3415-3429.
- BAUWENS, Luc & ROMBOUTS, Jeroen, 2009. "On marginal likelihood computation in change-point models," LIDAM Discussion Papers CORE 2009061, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & ROMBOUTS, Jeroen VK, 2012. "On marginal likelihood computation in change-point models," LIDAM Reprints CORE 2403, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Jeroen V.K. Rombouts, 2009. "On Marginal Likelihood Computation in Change-point Models," Cahiers de recherche 0942, CIRPEE.
- Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
- Arnaud Dufays & Jeroen V. K. Rombouts, 2019.
"Sparse Change-point HAR Models for Realized Variance,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 857-880, September.
- Arnaud Dufays & Jeroen V.K. Rombouts, 2016. "Sparse Change-point HAR Models for Realized Variance," Cahiers de recherche 1607, Centre de recherche sur les risques, les enjeux économiques, et les politiques publiques.
- Liu, Chun & Liu, Qing, 2012.
"Marginal likelihood calculation for the Gelfand–Dey and Chib methods,"
Economics Letters, Elsevier, vol. 115(2), pages 200-203.
- Liu, Chun, 2010. "Marginal likelihood calculation for gelfand-dey and Chib Method," MPRA Paper 34928, University Library of Munich, Germany.
- Nonejad, Nima, 2014. "Particle Gibbs with Ancestor Sampling Methods for Unobserved Component Time Series Models with Heavy Tails, Serial Dependence and Structural Breaks," MPRA Paper 55664, University Library of Munich, Germany.
- Ke Yang & Langnan Chen & Fengping Tian, 2015. "Realized Volatility Forecast of Stock Index Under Structural Breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(1), pages 57-82, January.
- Chen, Shengming & Bouteska, Ahmed & Sharif, Taimur & Abedin, Mohammad Zoynul, 2023. "The Russia–Ukraine war and energy market volatility: A novel application of the volatility ratio in the context of natural gas," Resources Policy, Elsevier, vol. 85(PA).
- Becker, Janis & Leschinski, Christian & Sibbertsen, Philipp, 2019. "Robust Multivariate Local Whittle Estimation and Spurious Fractional Cointegration," Hannover Economic Papers (HEP) dp-660, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Zargar, Faisal Nazir & Kumar, Dilip, 2020. "Modeling unbiased extreme value volatility estimator in presence of heterogeneity and jumps: A study with economic significance analysis," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 25-41.
- Maheu, John M. & Song, Yong, 2014.
"A new structural break model, with an application to Canadian inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 144-160.
- Maheu, John & Song, Yong, 2012. "A new structural break model with application to Canadian inflation forecasting," MPRA Paper 36870, University Library of Munich, Germany.
- John M. Maheu & Yong Song, 2012. "A New Structural Break Model with Application to Canadian Inflation Forecasting," Working Paper series 27_12, Rimini Centre for Economic Analysis.
- John M Maheu & Yong Song, 2012. "A New Structural Break Model with Application to Canadian Inflation Forecasting," Working Papers tecipa-448, University of Toronto, Department of Economics.
- Nima Nonejad, 2013. "A Mixture Innovation Heterogeneous Autoregressive Model for Structural Breaks and Long Memory," CREATES Research Papers 2013-24, Department of Economics and Business Economics, Aarhus University.
- Chevallier, Julien & Le Pen, Yannick & Sévi, Benoît, 2011.
"Options introduction and volatility in the EU ETS,"
Resource and Energy Economics, Elsevier, vol. 33(4), pages 855-880.
- Julien Chevallier & Yannick Le Pen & Benoît Sévi, 2009. "Options introduction and volatility in the EU ETS," Working Papers hal-00419339, HAL.
- Julien Chevallier & Yannick Le Pen & Benoît Sévi, 2011. "Options introduction and volatility in the EU ETS," Post-Print hal-00991848, HAL.
- Julien Chevallier & Yannick Le Pen & Benoît Sévi, 2011. "Options introduction and volatility in the EU ETS," Working Papers 1107, Chaire Economie du climat.
- Julien Chevallier & Yannick Le Pen & Benoît Sévi, 2009. "Options introduction and volatility in the EU ETS," EconomiX Working Papers 2009-33, University of Paris Nanterre, EconomiX.
- Maheu, John M. & McCurdy, Thomas H., 2011.
"Do high-frequency measures of volatility improve forecasts of return distributions?,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
- John M Maheu & Thomas H McCurdy, 2008. "Do high-frequency measures of volatility improve forecasts of return distributions?," Working Papers tecipa-324, University of Toronto, Department of Economics.
- John M. Maheu & Thomas H. McCurdy, 2009. "Do High-Frequency Measures of Volatility Improve Forecasts of Return Distributions?," Working Paper series 19_09, Rimini Centre for Economic Analysis.
- Li, Wenlan & Cheng, Yuxiang & Fang, Qiang, 2020. "Forecast on silver futures linked with structural breaks and day-of-the-week effect," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
- Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
- Yoontae Jeon & Thomas H. McCurdy, 2017. "Time-Varying Window Length for Correlation Forecasts," Econometrics, MDPI, vol. 5(4), pages 1-29, December.
- John M. Maheu & Yong Song, 2018.
"An efficient Bayesian approach to multiple structural change in multivariate time series,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(2), pages 251-270, March.
- Maheu, John M & Song, Yong, 2017. "An Efficient Bayesian Approach to Multiple Structural Change in Multivariate Time Series," MPRA Paper 79211, University Library of Munich, Germany.
- Grassi, Stefano & Santucci de Magistris, Paolo, 2015.
"It's all about volatility of volatility: Evidence from a two-factor stochastic volatility model,"
Journal of Empirical Finance, Elsevier, vol. 30(C), pages 62-78.
- Stefano Grassi & Paolo Santucci de Magistris, 2013. "It's all about volatility of volatility: evidence from a two-factor stochastic volatility model," Studies in Economics 1404, School of Economics, University of Kent.
- Stefano Grassi & Paolo Santucci de Magistris, 2013. "It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model," CREATES Research Papers 2013-03, Department of Economics and Business Economics, Aarhus University.
- Nonejad Nima, 2015. "Particle Gibbs with ancestor sampling for stochastic volatility models with: heavy tails, in mean effects, leverage, serial dependence and structural breaks," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 561-584, December.
- Julien Chevallier & Benoît Sévi, 2011.
"On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting,"
Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
- Julien Chevallier & Benoît Sévi, 2009. "On the Realized Volatility of the ECX CO2 Emissions 2008 Futures Contract: Distribution, Dynamics and Forecasting," Working Papers 2009.113, Fondazione Eni Enrico Mattei.
- Chevallier, Julien & Benoit, Sevi, 2009. "On the Realized Volatility of the ECX CO2 Emissions 2008 Futures Contract: Distribution, Dynamics and Forecasting," Sustainable Development Papers 55834, Fondazione Eni Enrico Mattei (FEEM).
- Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," EconomiX Working Papers 2009-24, University of Paris Nanterre, EconomiX.
- Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," Working Papers halshs-00387286, HAL.
- Jung, R.C. & Maderitsch, R., 2014. "Structural breaks in volatility spillovers between international financial markets: Contagion or mere interdependence?," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 331-342.
- Liu, Jing & Ma, Feng & Zhang, Yaojie, 2019. "Forecasting the Chinese stock volatility across global stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 466-477.
- Markopoulou, Chrysi E. & Skintzi, Vasiliki D. & Refenes, Apostolos-Paul N., 2016. "Realized hedge ratio: Predictability and hedging performance," International Review of Financial Analysis, Elsevier, vol. 45(C), pages 121-133.
- He, Zhongfang & Maheu, John M., 2010.
"Real time detection of structural breaks in GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2628-2640, November.
- Zhongfang He & John M Maheu, 2008. "Real Time Detection of Structural Breaks in GARCH Models," Working Papers tecipa-336, University of Toronto, Department of Economics.
- Zhongfang He & John M. Maheu, 2009. "Real Time Detection of Structural Breaks in GARCH Models," Working Paper series 11_09, Rimini Centre for Economic Analysis.
- Zhongfang He & John M. Maheu, 2009. "Real Time Detection of Structural Breaks in GARCH Models," Staff Working Papers 09-31, Bank of Canada.
- Chevallier, Julien, 2011.
"Detecting instability in the volatility of carbon prices,"
Energy Economics, Elsevier, vol. 33(1), pages 99-110, January.
- Julien Chevallier, 2011. "Detecting Instability in the Volatility of Carbon Prices," Post-Print hal-00991957, HAL.
- Panagiotis Delis & Stavros Degiannakis & George Filis, 2022. "What matters when developing oil price volatility forecasting frameworks?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 361-382, March.
- Stefano Grassi & Nima Nonejad & Paolo Santucci De Magistris, 2017.
"Forecasting With the Standardized Self‐Perturbed Kalman Filter,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 318-341, March.
- Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," Studies in Economics 1405, School of Economics, University of Kent.
- Stefano Grassi & Nima Nonejad & Paolo Santucci de Magistris, 2014. "Forecasting with the Standardized Self-Perturbed Kalman Filter," CREATES Research Papers 2014-12, Department of Economics and Business Economics, Aarhus University.
- Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
- AitSahlia, Farid & Yoon, Joon-Hui, 2016. "Information stages in efficient markets," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 84-94.
- Tian, Fengping & Yang, Ke & Chen, Langnan, 2017. "Realized volatility forecasting of agricultural commodity futures using the HAR model with time-varying sparsity," International Journal of Forecasting, Elsevier, vol. 33(1), pages 132-152.
- Ying Chen & Bo Li, 2011. "Forecasting Yield Curves in an Adaptive Framework," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 3(4), pages 237-259, December.
- Goldman Elena & Nam Jouahn & Tsurumi Hiroki & Wang Jun, 2013. "Regimes and long memory in realized volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(5), pages 521-549, December.
- Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
- Davide De Gaetano, 2016. "Forecast Combinations For Realized Volatility In Presence Of Structural Breaks," Departmental Working Papers of Economics - University 'Roma Tre' 0208, Department of Economics - University Roma Tre.
- Casson, Catherine & Fry, J. M. & Casson, Mark, 2011. "Evolution or revolution? a study of price and wage volatility in England, 1200-1900," MPRA Paper 31518, University Library of Munich, Germany.
- Donghua Wang & Yang Xin & Xiaohui Chang & Xingze Su, 2021. "Realized volatility forecasting and volatility spillovers: Evidence from Chinese non‐ferrous metals futures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2713-2731, April.
- Julien Chevallier & Yannick Le Pen & Benoît Sévi, 2009. "Options introduction and volatility in the EU ETS," Working Papers hal-04140857, HAL.
- Nonejad, Nima, 2017. "Forecasting aggregate stock market volatility using financial and macroeconomic predictors: Which models forecast best, when and why?," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 131-154.
- Liu, Jing & Wei, Yu & Ma, Feng & Wahab, M.I.M., 2017. "Forecasting the realized range-based volatility using dynamic model averaging approach," Economic Modelling, Elsevier, vol. 61(C), pages 12-26.
- Chen, Cathy W.S. & Watanabe, Toshiaki & Lin, Edward M.H., 2023. "Bayesian estimation of realized GARCH-type models with application to financial tail risk management," Econometrics and Statistics, Elsevier, vol. 28(C), pages 30-46.
- Nima Nonejad, 2013. "Long Memory and Structural Breaks in Realized Volatility: An Irreversible Markov Switching Approach," CREATES Research Papers 2013-26, Department of Economics and Business Economics, Aarhus University.
- Chun Liu & John M. Maheu, 2009.
"Forecasting realized volatility: a Bayesian model-averaging approach,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
- Chun Liu & John M Maheu, 2008. "Forecasting Realized Volatility: A Bayesian Model Averaging Approach," Working Papers tecipa-313, University of Toronto, Department of Economics.
- Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
- Bergsli, Lykke Øverland & Lind, Andrea Falk & Molnár, Peter & Polasik, Michał, 2022. "Forecasting volatility of Bitcoin," Research in International Business and Finance, Elsevier, vol. 59(C).
- He, Zhongfang, 2009. "Forecasting output growth by the yield curve: the role of structural breaks," MPRA Paper 28208, University Library of Munich, Germany.
- Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," Working Papers hal-04140871, HAL.
- Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
- repec:dau:papers:123456789/4598 is not listed on IDEAS
- Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
- Zhenjie Liang & Futian Weng & Yuanting Ma & Yan Xu & Miao Zhu & Cai Yang, 2022. "Measurement and Analysis of High Frequency Assert Volatility Based on Functional Data Analysis," Mathematics, MDPI, vol. 10(7), pages 1-11, April.
- Xiangjin B. Chen & Jiti Gao & Degui Li & Param Silvapulle, 2018. "Nonparametric Estimation and Forecasting for Time-Varying Coefficient Realized Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 88-100, January.
- Aalborg, Halvor Aarhus & Molnár, Peter & de Vries, Jon Erik, 2019. "What can explain the price, volatility and trading volume of Bitcoin?," Finance Research Letters, Elsevier, vol. 29(C), pages 255-265.
- Yudong Wang & Zhiyuan Pan & Chongfeng Wu, 2017. "Time‐Varying Parameter Realized Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 566-580, August.
- Song, Junmo & Baek, Changryong, 2019. "Detecting structural breaks in realized volatility," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 58-75.
- Julien Chevallier & Yannick Le Pen & Benoît Sévi, 2009. "Options Introduction and Volatility in the EU ETS," Working Papers halshs-00405709, HAL.
- Arnaud Dufays & Zhuo Li & Jeroen V.K. Rombouts & Yong Song, 2021. "Sparse change‐point VAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 703-727, September.
- Lin, Edward M.H. & Chen, Cathy W.S. & Gerlach, Richard, 2012. "Forecasting volatility with asymmetric smooth transition dynamic range models," International Journal of Forecasting, Elsevier, vol. 28(2), pages 384-399.
- Chen, Wei-Peng & Choudhry, Taufiq & Wu, Chih-Chiang, 2013. "The extreme value in crude oil and US dollar markets," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 191-210.
- Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.