IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v115y2012i2p200-203.html
   My bibliography  Save this article

Marginal likelihood calculation for the Gelfand–Dey and Chib methods

Author

Listed:
  • Liu, Chun
  • Liu, Qing

Abstract

A trade-off exists between the Gelfand and Dey (1994) and Chib (1995) methods to calculate the marginal likelihood in Bayesian estimation. Using the Markov Chain Monte Carlo method, we demonstrate that the performance of the two methods is fairly close.

Suggested Citation

  • Liu, Chun & Liu, Qing, 2012. "Marginal likelihood calculation for the Gelfand–Dey and Chib methods," Economics Letters, Elsevier, vol. 115(2), pages 200-203.
  • Handle: RePEc:eee:ecolet:v:115:y:2012:i:2:p:200-203
    DOI: 10.1016/j.econlet.2011.12.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016517651100557X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2011.12.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chun Liu & John M. Maheu, 2008. "Are There Structural Breaks in Realized Volatility?," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 326-360, Summer.
    2. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    3. G. M. Martin & C. S. Forbes, 1999. "Using simulation methods for bayesian econometric models: inference, development and communication: some comments," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 113-118.
    4. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    5. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    6. W. E. Griffiths, 1999. "Estimating consumer surplus comments on "using simulation methods for bayesian econometric models: inference development and communication"," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 75-87.
    7. John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
    8. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen‐Ming Lee & Truong‐Nhat Le & Phuoc‐Loc Tran & Chin‐Shang Li, 2022. "Investigating the association of a sensitive attribute with a random variable using the Christofides generalised randomised response design and Bayesian methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1471-1502, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hibiki Ichiue & Takushi Kurozumi & Takeki Sunakawa, 2013. "Inflation Dynamics And Labor Market Specifications: A Bayesian Dynamic Stochastic General Equilibrium Approach For Japan'S Economy," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 273-287, January.
    2. Dewachter, Hans & Iania, Leonardo & Lyrio, Marco, 2011. "A New-Keynesian model of the yield curve with learning dynamics: A Bayesian evaluation," MPRA Paper 34461, University Library of Munich, Germany, revised Sep 2011.
    3. Warne, Anders, 2006. "Bayesian inference in cointegrated VAR models: with applications to the demand for euro area M3," Working Paper Series 692, European Central Bank.
    4. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.
    5. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
    6. Riggi, Marianna & Tancioni, Massimiliano, 2010. "Nominal vs real wage rigidities in New Keynesian models with hiring costs: A Bayesian evaluation," Journal of Economic Dynamics and Control, Elsevier, vol. 34(7), pages 1305-1324, July.
    7. Rangan Gupta & Rudi Steinbach, 2010. "Forecasting Key Macroeconomic Variables of the South African Economy: A Small Open Economy New Keynesian DSGE-VAR Model," Working Papers 201019, University of Pretoria, Department of Economics.
    8. Yasuo Hirose, 2008. "Equilibrium Indeterminacy and Asset Price Fluctuation in Japan: A Bayesian Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(5), pages 967-999, August.
    9. Yasuo Hirose, 2008. "Monetary Policy and Sunspot Fluctuation in the U.S. and the Euro Area," Bank of Japan Working Paper Series 08-E-7, Bank of Japan.
    10. Viktors Ajevskis & Kristine Vitola, 2011. "Fixed Exchange Rate Versus Inflation Targeting: Evidence from DSGE Modelling," Working Papers 2011/02, Latvijas Banka.
    11. Julien Chevallier & Benoît Sévi, 2011. "On the realized volatility of the ECX CO 2 emissions 2008 futures contract: distribution, dynamics and forecasting," Annals of Finance, Springer, vol. 7(1), pages 1-29, February.
    12. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
    13. Chen, Cathy W.S. & Watanabe, Toshiaki & Lin, Edward M.H., 2023. "Bayesian estimation of realized GARCH-type models with application to financial tail risk management," Econometrics and Statistics, Elsevier, vol. 28(C), pages 30-46.
    14. Stefano Grassi & Nima Nonejad & Paolo Santucci De Magistris, 2017. "Forecasting With the Standardized Self‐Perturbed Kalman Filter," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 318-341, March.
    15. Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
    16. Ke Yang & Langnan Chen & Fengping Tian, 2015. "Realized Volatility Forecast of Stock Index Under Structural Breaks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(1), pages 57-82, January.
    17. Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," Working Papers hal-04140871, HAL.
    18. Maheu, John M. & McCurdy, Thomas H., 2011. "Do high-frequency measures of volatility improve forecasts of return distributions?," Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
    19. Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
    20. repec:dau:papers:123456789/4598 is not listed on IDEAS
    21. Nima Nonejad, 2013. "Long Memory and Structural Breaks in Realized Volatility: An Irreversible Markov Switching Approach," CREATES Research Papers 2013-26, Department of Economics and Business Economics, Aarhus University.

    More about this item

    Keywords

    Model comparison; Structural break; Heterogeneous autoregressive model; Bayesian estimation;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:115:y:2012:i:2:p:200-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.