IDEAS home Printed from https://ideas.repec.org/r/taf/jnlbes/v33y2015i2p270-281.html
   My bibliography  Save this item

Evaluating the Calibration of Multi-Step-Ahead Density Forecasts Using Raw Moments

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Buncic, Daniel & Müller, Oliver, 2017. "Measuring the output gap in Switzerland with linear opinion pools," Economic Modelling, Elsevier, vol. 64(C), pages 153-171.
  2. Jonas Dovern & Hans Manner, 2020. "Order‐invariant tests for proper calibration of multivariate density forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 440-456, June.
  3. Delle Monache, Davide & Petrella, Ivan, 2017. "Adaptive models and heavy tails with an application to inflation forecasting," International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
  4. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
  5. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle in forward looking data," Review of Derivatives Research, Springer, vol. 21(3), pages 253-276, October.
  6. Rossi, Barbara & Sekhposyan, Tatevik, 2019. "Alternative tests for correct specification of conditional predictive densities," Journal of Econometrics, Elsevier, vol. 208(2), pages 638-657.
  7. James Mitchell & Martin Weale, 2023. "Censored density forecasts: Production and evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 714-734, August.
  8. Cardani, Roberta & Paccagnini, Alessia & Villa, Stefania, 2019. "Forecasting with instabilities: An application to DSGE models with financial frictions," Journal of Macroeconomics, Elsevier, vol. 61(C), pages 1-1.
  9. Knotek, Edward S. & Zaman, Saeed, 2023. "Real-time density nowcasts of US inflation: A model combination approach," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1736-1760.
  10. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
  11. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
  12. Tomás Marinozzi, 2023. "Forecasting Inflation in Argentina: A Probabilistic Approach," Ensayos Económicos, Central Bank of Argentina, Economic Research Department, vol. 1(81), pages 81-110, May.
  13. Gelain, Paolo & Iskrev, Nikolay & J. Lansing, Kevin & Mendicino, Caterina, 2019. "Inflation dynamics and adaptive expectations in an estimated DSGE model," Journal of Macroeconomics, Elsevier, vol. 59(C), pages 258-277.
  14. Dillschneider, Yannick & Maurer, Raimond, 2019. "Functional Ross recovery: Theoretical results and empirical tests," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
  15. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
  16. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
  17. Alonzo, Bastien & Tankov, Peter & Drobinski, Philippe & Plougonven, Riwal, 2020. "Probabilistic wind forecasting up to three months ahead using ensemble predictions for geopotential height," International Journal of Forecasting, Elsevier, vol. 36(2), pages 515-530.
  18. Christian Pape & Arne Vogler & Oliver Woll & Christoph Weber, 2017. "Forecasting the distributions of hourly electricity spot prices," EWL Working Papers 1705, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised May 2017.
  19. Matei Demetrescu & Robinson Kruse-Becher, 2021. "Is U.S. real output growth really non-normal? Testing distributional assumptions in time-varying location-scale models," CREATES Research Papers 2021-07, Department of Economics and Business Economics, Aarhus University.
  20. Fabio Busetti, 2017. "Quantile Aggregation of Density Forecasts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 495-512, August.
  21. Clements, Michael P., 2012. "Subjective and Ex Post Forecast Uncertainty: US Inflation and Output Growth," Economic Research Papers 270629, University of Warwick - Department of Economics.
  22. Roberta Cardani & Alessia Paccagnini & Stefania Villa, 2015. "Forecasting in a DSGE Model with Banking Intermediation: Evidence from the US," Working Papers 292, University of Milano-Bicocca, Department of Economics, revised Feb 2015.
  23. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017. "Density Forecasts With Midas Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
  24. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.
  25. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017. "Density Forecasts With Midas Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
  26. Jackwerth, Jens Carsten & Menner, Marco, 2020. "Does the Ross recovery theorem work empirically?," Journal of Financial Economics, Elsevier, vol. 137(3), pages 723-739.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.