My bibliography
Save this item
Semiparametric Pseudo-Likelihoods in Generalized Linear Models With Nonignorable Missing Data
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tianqing Liu & Xiaohui Yuan, 2020. "Doubly robust augmented-estimating-equations estimation with nonignorable nonresponse data," Statistical Papers, Springer, vol. 61(6), pages 2241-2270, December.
- Ji Chen & Jun Shao & Fang Fang, 2021. "Instrument search in pseudo-likelihood approach for nonignorable nonresponse," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 519-533, June.
- Zhang, Jing & Wang, Qihua & Kang, Jian, 2020. "Feature screening under missing indicator imputation with non-ignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
- Xuerong Chen & Guoqing Diao & Jing Qin, 2020. "Pseudo likelihood‐based estimation and testing of missingness mechanism function in nonignorable missing data problems," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1377-1400, December.
- Rui Duan & C. Jason Liang & Pamela Shaw & Cheng Yong Tang & Yong Chen, 2020. "Missing at Random or Not: A Semiparametric Testing Approach," Papers 2003.11181, arXiv.org.
- Jierui Du & Xia Cui, 2024. "Semiparametric estimation in generalized additive partial linear models with nonignorable nonresponse data," Statistical Papers, Springer, vol. 65(5), pages 3235-3259, July.
- Majid Mojirsheibani, 2022. "On the maximal deviation of kernel regression estimators with NMAR response variables," Statistical Papers, Springer, vol. 63(5), pages 1677-1705, October.
- Breunig, Christoph & Haan, Peter, 2021. "Nonparametric regression with selectively missing covariates," Journal of Econometrics, Elsevier, vol. 223(1), pages 28-52.
- Bindele, Huybrechts F. & Nguelifack, Brice M., 2019. "Generalized signed-rank estimation for regression models with non-ignorable missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 14-33.
- Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018.
"Nonparametric estimation in case of endogenous selection,"
Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
- Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2015. "Nonparametric estimation in case of endogenous selection," SFB 649 Discussion Papers 2015-050, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Christoph Breunig & Enno Mammen & Anna Simoni, 2018. "Nonparametric estimation in case of endogenous selection," Post-Print hal-03089885, HAL.
- Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2017. "Nonparametric Estimation in Case of Endogenous Selection," Rationality and Competition Discussion Paper Series 58, CRC TRR 190 Rationality and Competition.
- Christoph Breunig & Stephan Martin, 2020. "Nonclassical Measurement Error in the Outcome Variable," Papers 2009.12665, arXiv.org, revised May 2021.
- Li, Mengyan & Ma, Yanyuan & Zhao, Jiwei, 2022. "Efficient estimation in a partially specified nonignorable propensity score model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Breunig, Christoph & Kummer, Michael & Ohnemus, Jörg & Viete, Steffen, 2016. "IT outsourcing and firm productivity: Eliminating bias from selective missingness in the dependent variable," ZEW Discussion Papers 16-092, ZEW - Leibniz Centre for European Economic Research.
- Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201905, University of Kansas, Department of Economics, revised Mar 2019.
- Breunig, Christoph, 2017. "Testing Missing At Random Using Instrumental Variables," Rationality and Competition Discussion Paper Series 59, CRC TRR 190 Rationality and Competition.
- Xianwen Ding & Jiandong Chen & Xueping Chen, 2020. "Regularized quantile regression for ultrahigh-dimensional data with nonignorable missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(5), pages 545-568, July.
- Christoph Breunig & Peter Haan, 2018. "Nonparametric Regression with Selectively Missing Covariates," Papers 1810.00411, arXiv.org, revised Oct 2020.
- Shonosuke Sugasawa & Kosuke Morikawa & Keisuke Takahata, 2022. "Bayesian semiparametric modeling of response mechanism for nonignorable missing data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 101-117, March.
- Liu, Tianqing & Yuan, Xiaohui & Sun, Jianguo, 2021. "Weighted rank estimation for nonparametric transformation models with nonignorable missing data," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
- Mojirsheibani, Majid, 2021. "On classification with nonignorable missing data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
- Pengfei Li & Jing Qin & Yukun Liu, 2023. "Instability of inverse probability weighting methods and a remedy for nonignorable missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3215-3226, December.
- Zongwu Cai & Ying Fang & Ming Lin & Shengfang Tang, 2020. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202004, University of Kansas, Department of Economics, revised Feb 2020.
- Puying Zhao & Hui Zhao & Niansheng Tang & Zhaohai Li, 2017. "Weighted composite quantile regression analysis for nonignorable missing data using nonresponse instrument," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 189-212, April.
- Fang, Ying & Tang, Shengfang & Cai, Zongwu & Lin, Ming, 2020. "An alternative test for conditional unconfoundedness using auxiliary variables," Economics Letters, Elsevier, vol. 194(C).
- Zhou, Jing & Lan, Wei & Wang, Hansheng, 2022. "Asymptotic covariance estimation by Gaussian random perturbation," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
- Cui, Xia & Guo, Jianhua & Yang, Guangren, 2017. "On the identifiability and estimation of generalized linear models with parametric nonignorable missing data mechanism," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 64-80.
- Morikawa, Kosuke & Kano, Yutaka, 2018. "Identification problem of transition models for repeated measurement data with nonignorable missing values," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 216-230.
- Lyu Ni & Jun Shao, 2023. "Estimation with multivariate outcomes having nonignorable item nonresponse," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 1-15, February.
- Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
- Wei Luo, 2022. "On efficient dimension reduction with respect to the interaction between two response variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 269-294, April.
- Ying Fang & Ming Lin & Shengfang Tang & Zongwu Cai, 2021. "Testing Conditional Independence in Macroeconomic Policy Evaluation for Time Series Data," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202118, University of Kansas, Department of Economics, revised Sep 2021.
- Tang, Cheng Yong, 2024. "A model specification test for semiparametric nonignorable missing data modeling," Econometrics and Statistics, Elsevier, vol. 30(C), pages 124-132.
- Jiwei Zhao, 2017. "Reducing bias for maximum approximate conditional likelihood estimator with general missing data mechanism," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(3), pages 577-593, July.
- Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.