IDEAS home Printed from https://ideas.repec.org/r/taf/apmtfi/v14y2007i4p347-363.html
   My bibliography  Save this item

Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Imai, Junichi & Kawai, Reiichiro, 2011. "On finite truncation of infinite shot noise series representation of tempered stable laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4411-4425.
  2. Szczepocki Piotr, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 173-187, June.
  3. Akira Yamazaki, 2016. "Generalized Barndorff-Nielsen And Shephard Model And Discretely Monitored Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-34, June.
  4. Neil Shephard & Ole E. Barndorff-Nielsen, 2008. "Modelling and measuring volatility," Economics Series Working Papers 2008--FE-31, University of Oxford, Department of Economics.
  5. Yang, Ben-Zhang & Yue, Jia & Wang, Ming-Hui & Huang, Nan-Jing, 2019. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 73-84.
  6. Song-Ping Zhu & Guang-Hua Lian, 2018. "On the Convexity Correction Approximation in Pricing Volatility Swaps and VIX Futures," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 383-401, November.
  7. Semere Habtemicael & Indranil SenGupta, 2016. "Pricing variance and volatility swaps for Barndorff-Nielsen and Shephard process driven financial markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-35, December.
  8. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
  9. Gong, Yaxian, 2020. "Credit default swap and two-sided moral hazard," Finance Research Letters, Elsevier, vol. 34(C).
  10. Subhojit Biswas & Diganta Mukherjee & Indranil SenGupta, 2020. "Multi-asset Generalised Variance Swaps in Barndorff-Nielsen and Shephard model," Papers 2011.13474, arXiv.org.
  11. Anatoliy Swishchuk & Sebastian Franco, 2023. "Pricing of Averaged Variance, Volatility, Covariance and Correlation Swaps with Semi-Markov Volatilities," Risks, MDPI, vol. 11(9), pages 1-22, September.
  12. Takuji Arai, 2019. "Pricing And Hedging Of Vix Options For Barndorff-Nielsen And Shephard Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-26, December.
  13. Carole Bernard & Zhenyu Cui, 2013. "Prices and Asymptotics for Discrete Variance Swaps," Papers 1305.7092, arXiv.org.
  14. Alexandru Badescu & Zhenyu Cui & Juan-Pablo Ortega, 2019. "Closed-form variance swap prices under general affine GARCH models and their continuous-time limits," Annals of Operations Research, Springer, vol. 282(1), pages 27-57, November.
  15. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
  16. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
  17. Subhojit Biswas & Diganta Mukherjee, 2019. "A Proposal for Multi-asset Generalised Variance Swaps," Papers 1908.03899, arXiv.org.
  18. Takuji Arai, 2019. "Pricing and hedging of VIX options for Barndorff-Nielsen and Shephard models," Papers 1904.12260, arXiv.org.
  19. Sebastian Franco & Anatoliy Swishchuk, 2023. "Pricing of Pseudo-Swaps Based on Pseudo-Statistics," Risks, MDPI, vol. 11(8), pages 1-30, August.
  20. Aziz Issaka & Indranil SenGupta, 2017. "Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index," Annals of Finance, Springer, vol. 13(4), pages 401-434, November.
  21. Shibin Zhang & Xinsheng Zhang, 2013. "A least squares estimator for discretely observed Ornstein–Uhlenbeck processes driven by symmetric α-stable motions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 89-103, February.
  22. Friedrich Hubalek & Martin Keller-Ressel & Carlo Sgarra, 2014. "Geometric Asian Option Pricing in General Affine Stochastic Volatility Models with Jumps," Papers 1407.2514, arXiv.org.
  23. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Papers 2105.02325, arXiv.org.
  24. Giovanni Salvi & Anatoliy V. Swishchuk, 2012. "Modeling and Pricing of Covariance and Correlation Swaps for Financial Markets with Semi-Markov Volatilities," Papers 1205.5565, arXiv.org.
  25. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, December.
  26. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Annals of Finance, Springer, vol. 17(4), pages 529-558, December.
  27. Kawai Reiichiro & Masuda Hiroki, 2011. "Exact discrete sampling of finite variation tempered stable Ornstein–Uhlenbeck processes," Monte Carlo Methods and Applications, De Gruyter, vol. 17(3), pages 279-300, January.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.