IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v390y2011i23p4411-4425.html
   My bibliography  Save this article

On finite truncation of infinite shot noise series representation of tempered stable laws

Author

Listed:
  • Imai, Junichi
  • Kawai, Reiichiro

Abstract

Tempered stable processes are widely used in various fields of application as alternatives with finite second moment and long-range Gaussian behaviors to stable processes. Infinite shot noise series representation is the only exact simulation method for the tempered stable process and has recently attracted attention for simulation use with ever improved computational speed. In this paper, we derive series representations for the tempered stable laws of increasing practical interest through the thinning, rejection, and inverse Lévy measure methods. We make a rigorous comparison among those representations, including the existing one due to Imai and Kawai [29] and Rosiński (2007) [3], in terms of the tail mass of Lévy measures which can be simulated under a common finite truncation scheme. The tail mass are derived in closed form for some representations thanks to various structural properties of the tempered stable laws. We prove that the representation via the inverse Lévy measure method achieves a much faster convergence in truncation to the infinite sum than all the other representations. Numerical results are presented to support our theoretical analysis.

Suggested Citation

  • Imai, Junichi & Kawai, Reiichiro, 2011. "On finite truncation of infinite shot noise series representation of tempered stable laws," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4411-4425.
  • Handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4411-4425
    DOI: 10.1016/j.physa.2011.07.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437111005759
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2011.07.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matsushita, Raul & Rathie, Pushpa & Da Silva, Sergio, 2003. "Exponentially damped Lévy flights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 326(3), pages 544-555.
    2. Heyde, C.C. & Sly, Allan, 2008. "A Cautionary note on modeling with fractional Lévy flights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5024-5032.
    3. Vinogradov, Dmitry V., 2010. "Cumulant approach of arbitrary truncated Levy flight," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5794-5800.
    4. Karen J. Palmer & Martin S. Ridout & Byron J. T. Morgan, 2008. "Modelling cell generation times by using the tempered stable distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 379-397, September.
    5. Houdré, C. & Kawai, R., 2006. "On fractional tempered stable motion," Stochastic Processes and their Applications, Elsevier, vol. 116(8), pages 1161-1184, August.
    6. Dmitry V. Vinogradov, 2010. "Cumulant Approach of Arbitrary Truncated Levy Flight," Papers 1006.2489, arXiv.org, revised Oct 2010.
    7. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    8. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    9. Kawai Reiichiro, 2006. "An importance sampling method based on the density transformation of Lévy processes," Monte Carlo Methods and Applications, De Gruyter, vol. 12(2), pages 171-186, April.
    10. Gupta, Hari M. & Campanha, José R., 1999. "The gradually truncated Lévy flight for systems with power-law distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 268(1), pages 231-239.
    11. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kawai, Reiichiro, 2021. "A general approach to sample path generation of infinitely divisible processes via shot noise representation," Statistics & Probability Letters, Elsevier, vol. 174(C).
    2. Till Massing, 2018. "Simulation of Student–Lévy processes using series representations," Computational Statistics, Springer, vol. 33(4), pages 1649-1685, December.
    3. Michele Bianchi & Frank Fabozzi, 2014. "Discussion of ‘on simulation and properties of the stable law’ by Devroye and James," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(3), pages 353-357, August.
    4. Michele Leonardo Bianchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2018. "Calibrating the Italian Smile with Time-Varying Volatility and Heavy-Tailed Models," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 339-378, March.
    5. Hasan Fallahgoul & Gregoire Loeper, 2021. "Modelling tail risk with tempered stable distributions: an overview," Annals of Operations Research, Springer, vol. 299(1), pages 1253-1280, April.
    6. Reiichiro Kawai, 2017. "Sample Path Generation of Lévy-Driven Continuous-Time Autoregressive Moving Average Processes," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 175-211, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    2. Matsushita, Raul & Gleria, Iram & Figueiredo, Annibal & Rathie, Pushpa & Da Silva, Sergio, 2004. "Exponentially damped Lévy flights, multiscaling, and exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 353-369.
    3. Todorov, Viktor & Zhang, Yang, 2023. "Bias reduction in spot volatility estimation from options," Journal of Econometrics, Elsevier, vol. 234(1), pages 53-81.
    4. Fu, Qi & So, Jacky Yuk-Chow & Li, Xiaotong, 2024. "Stable paretian distribution, return generating processes and habit formation—The implication for equity premium puzzle," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    5. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    6. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    7. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    8. Sztonyk, Pawel, 2011. "Transition density estimates for jump Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1245-1265, June.
    9. Frederik Herzberg, 2013. "First steps towards an equilibrium theory for Lévy financial markets," Annals of Finance, Springer, vol. 9(3), pages 543-572, August.
    10. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    11. Akira Yamazaki, 2016. "Generalized Barndorff-Nielsen And Shephard Model And Discretely Monitored Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-34, June.
    12. Mr. Noureddine Krichene, 2006. "Recent Dynamics of Crude Oil Prices," IMF Working Papers 2006/299, International Monetary Fund.
    13. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    14. Sergio Da Silva, 2004. "International Finance, Levy Distributions, and the Econophysics of Exchange Rates," International Finance 0405018, University Library of Munich, Germany.
    15. Todorov, Viktor, 2019. "Nonparametric inference for the spectral measure of a bivariate pure-jump semimartingale," Stochastic Processes and their Applications, Elsevier, vol. 129(2), pages 419-451.
    16. E. Nicolato & D. Sloth, 2014. "Risk adjustments of option prices under time-changed dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 125-141, January.
    17. Eckhard Platen & Hardy Hulley, 2008. "Hedging for the Long Run," Research Paper Series 214, Quantitative Finance Research Centre, University of Technology, Sydney.
    18. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    19. Torben G. Andersen & Nicola Fusari & Viktor Todorov & Rasmus T. Varneskov, 2018. "Option Panels in Pure-Jump Settings," CREATES Research Papers 2018-04, Department of Economics and Business Economics, Aarhus University.
    20. Gleria, Iram & Figueiredo, Annibal & Matsushita, Raul & Rathie, Pushpa & Da Silva, Sergio, 2004. "Exponentially damped Lévy flights, multiscaling and slow convergence in stockmarkets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 200-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:390:y:2011:i:23:p:4411-4425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.