IDEAS home Printed from https://ideas.repec.org/r/spr/sprbok/978-3-319-08114-4.html
   My bibliography  Save this item

Introduction to Nonsmooth Optimization

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. H. Apolinário & E. Papa Quiroz & P. Oliveira, 2016. "A scalarization proximal point method for quasiconvex multiobjective minimization," Journal of Global Optimization, Springer, vol. 64(1), pages 79-96, January.
  2. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2018. "Minimizing Piecewise-Concave Functions Over Polyhedra," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 580-597, May.
  3. Fabrice Poirion & Quentin Mercier & Jean-Antoine Désidéri, 2017. "Descent algorithm for nonsmooth stochastic multiobjective optimization," Computational Optimization and Applications, Springer, vol. 68(2), pages 317-331, November.
  4. Jean-Pierre Crouzeix & Nadezda Sukhorukova & Julien Ugon, 2017. "Characterization Theorem for Best Polynomial Spline Approximation with Free Knots, Variable Degree and Fixed Tails," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 950-964, March.
  5. Napsu Karmitsa, 2015. "Diagonal Bundle Method for Nonsmooth Sparse Optimization," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 889-905, September.
  6. Olivier Morand & Kevin Reffett & Suchismita Tarafdar, 2018. "Generalized Envelope Theorems: Applications to Dynamic Programming," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 650-687, March.
  7. Morteza Maleknia & Mostafa Shamsi, 2020. "A Gradient Sampling Method Based on Ideal Direction for Solving Nonsmooth Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 181-204, October.
  8. M. Maleknia & M. Shamsi, 2020. "A new method based on the proximal bundle idea and gradient sampling technique for minimizing nonsmooth convex functions," Computational Optimization and Applications, Springer, vol. 77(2), pages 379-409, November.
  9. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2022. "Essentials of numerical nonsmooth optimization," Annals of Operations Research, Springer, vol. 314(1), pages 213-253, July.
  10. Yogendra Pandey & S. K. Mishra, 2018. "Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators," Annals of Operations Research, Springer, vol. 269(1), pages 549-564, October.
  11. Tapio Westerlund & Ville-Pekka Eronen & Marko M. Mäkelä, 2018. "On solving generalized convex MINLP problems using supporting hyperplane techniques," Journal of Global Optimization, Springer, vol. 71(4), pages 987-1011, August.
  12. Ville-Pekka Eronen & Jan Kronqvist & Tapio Westerlund & Marko M. Mäkelä & Napsu Karmitsa, 2017. "Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems," Journal of Global Optimization, Springer, vol. 69(2), pages 443-459, October.
  13. Karmitsa, Napsu & Bagirov, Adil M. & Taheri, Sona, 2017. "New diagonal bundle method for clustering problems in large data sets," European Journal of Operational Research, Elsevier, vol. 263(2), pages 367-379.
  14. Javad Koushki & Majid Soleimani-damaneh, 2020. "Characterization of generalized FJ and KKT conditions in nonsmooth nonconvex optimization," Journal of Global Optimization, Springer, vol. 76(2), pages 407-431, February.
  15. Outi Montonen & Kaisa Joki, 2018. "Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints," Journal of Global Optimization, Springer, vol. 72(3), pages 403-429, November.
  16. Gaudioso, Manlio & Giallombardo, Giovanni & Mukhametzhanov, Marat, 2018. "Numerical infinitesimals in a variable metric method for convex nonsmooth optimization," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 312-320.
  17. Napsu Karmitsa, 2016. "Testing Different Nonsmooth Formulations of the Lennard–Jones Potential in Atomic Clustering Problems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 316-335, October.
  18. Giorgio Giorgi, 2021. "Some Classical Directional Derivatives and Their Use in Optimization," DEM Working Papers Series 204, University of Pavia, Department of Economics and Management.
  19. Kaisa Joki & Adil M. Bagirov & Napsu Karmitsa & Marko M. Mäkelä, 2017. "A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes," Journal of Global Optimization, Springer, vol. 68(3), pages 501-535, July.
  20. Chungen Shen & Xiao Liu, 2021. "Solving nonnegative sparsity-constrained optimization via DC quadratic-piecewise-linear approximations," Journal of Global Optimization, Springer, vol. 81(4), pages 1019-1055, December.
  21. Joki, Kaisa & Bagirov, Adil M. & Karmitsa, Napsu & Mäkelä, Marko M. & Taheri, Sona, 2020. "Clusterwise support vector linear regression," European Journal of Operational Research, Elsevier, vol. 287(1), pages 19-35.
  22. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico & Adil M. Bagirov, 2018. "Minimizing nonsmooth DC functions via successive DC piecewise-affine approximations," Journal of Global Optimization, Springer, vol. 71(1), pages 37-55, May.
  23. Felipe Serrano & Robert Schwarz & Ambros Gleixner, 2020. "On the relation between the extended supporting hyperplane algorithm and Kelley’s cutting plane algorithm," Journal of Global Optimization, Springer, vol. 78(1), pages 161-179, September.
  24. Zhou Sheng & Gonglin Yuan, 2018. "An effective adaptive trust region algorithm for nonsmooth minimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 251-271, September.
  25. Nader Kanzi & Majid Soleimani-damaneh, 2020. "Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization," Journal of Global Optimization, Springer, vol. 77(3), pages 627-641, July.
  26. A. M. Bagirov & N. Hoseini Monjezi & S. Taheri, 2021. "An augmented subgradient method for minimizing nonsmooth DC functions," Computational Optimization and Applications, Springer, vol. 80(2), pages 411-438, November.
  27. Manlio Gaudioso & Giovanni Giallombardo & Giovanna Miglionico, 2020. "Essentials of numerical nonsmooth optimization," 4OR, Springer, vol. 18(1), pages 1-47, March.
  28. Li-Ping Pang & Qi Wu & Jin-He Wang & Qiong Wu, 2020. "A discretization algorithm for nonsmooth convex semi-infinite programming problems based on bundle methods," Computational Optimization and Applications, Springer, vol. 76(1), pages 125-153, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.