IDEAS home Printed from https://ideas.repec.org/r/spr/scient/v96y2013i1d10.1007_s11192-012-0930-3.html
   My bibliography  Save this item

A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ansgar Moeller & Martin G. Moehrle, 2015. "Completing keyword patent search with semantic patent search: introducing a semiautomatic iterative method for patent near search based on semantic similarities," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 77-96, January.
  2. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
  3. Yoon, Byungun & Magee, Christopher L., 2018. "Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 105-117.
  4. Changbae Mun & Sejun Yoon & Hyunseok Park, 2019. "Structural decomposition of technological domain using patent co-classification and classification hierarchy," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 633-652, November.
  5. MAVRIDIS, Dimitrios & CSÉFALVAY, Zoltan & GKOTSIS, Petros & POTTERS, Lesley, 2021. "A Preliminary Index of SARS-CoV-2 Diagnostic Testing Patents," JRC Working Papers on Corporate R&D and Innovation 2020-07, Joint Research Centre.
  6. Jie Hu & Shaobo Li & Jianjun Hu & Guanci Yang, 2018. "A Hierarchical Feature Extraction Model for Multi-Label Mechanical Patent Classification," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
  7. Benson, Christopher L. & Magee, Christopher L., 2014. "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, Elsevier, vol. 68(C), pages 745-751.
  8. Subarna Basnet & Christopher L Magee, 2017. "Artifact interactions retard technological improvement: An empirical study," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-17, August.
  9. Shubbak, Mahmood H., 2019. "Advances in solar photovoltaics: Technology review and patent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
  10. Mun, Changbae & Yoon, Sejun & Raghavan, Nagarajan & Hwang, Dongwook & Basnet, Subarna & Park, Hyunseok, 2021. "Function score-based technological trend analysis," Technovation, Elsevier, vol. 101(C).
  11. Parraguez, Pedro & Škec, Stanko & e Carmo, Duarte Oliveira & Maier, Anja, 2020. "Quantifying technological change as a combinatorial process," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
  12. Christopher L Benson & Christopher L Magee, 2015. "Quantitative Determination of Technological Improvement from Patent Data," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-23, April.
  13. Donghyun You & Hyunseok Park, 2018. "Developmental Trajectories in Electrical Steel Technology Using Patent Information," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
  14. Parcu, Pier Luigi & Pisarkiewicz, Anna Renata & Carrozza, Chiara & Innocenti, Niccolò, 2023. "The future of 5G and beyond: Leadership, deployment and European policies," Telecommunications Policy, Elsevier, vol. 47(9).
  15. Christopher L. Benson & Christopher L. Magee, 2015. "Technology structural implications from the extension of a patent search method," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 1965-1985, March.
  16. Matthias Niggli & Christian Rutzer, 2023. "Digital technologies, technological improvement rates, and innovations “Made in Switzerland”," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-31, December.
  17. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
  18. Triulzi, Giorgio & Alstott, Jeff & Magee, Christopher L., 2020. "Estimating technology performance improvement rates by mining patent data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
  19. Flamand, Marina & Frigant, Vincent & Miollan, Stéphane & Dimitrova, Zlatina & Sauve, Henri, 2024. "Evaluating the TIS's knowledge production function using patent data: A multi-criteria approach applied to the technological bricks of the hydrogen storage," MPRA Paper 123050, University Library of Munich, Germany.
  20. Fang Han & Christopher L. Magee, 2018. "Testing the science/technology relationship by analysis of patent citations of scientific papers after decomposition of both science and technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(2), pages 767-796, August.
  21. Mariam Barry & Giorgio Triulzi & Christopher L. Magee, 2017. "Food Productivity Trends from Hybrid Corn: Statistical Analysis of Patents and Field-test data," Papers 1706.05911, arXiv.org.
  22. Park, Inchae & Triulzi, Giorgio & Magee, Christopher L., 2022. "Tracing the emergence of new technology: A comparative analysis of five technological domains," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
  23. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
  24. Martin Ho & Henry CW Price & Tim S Evans & Eoin O'Sullivan, 2023. "Order in Innovation," Papers 2302.13076, arXiv.org.
  25. Annapoornima M. Subramanian & Moren Lévesque & Vareska van de Vrande, 2020. "“Pulling the Plug:” Time Allocation between Drug Discovery and Development Projects," Production and Operations Management, Production and Operations Management Society, vol. 29(12), pages 2851-2876, December.
  26. Magee, C.L. & Basnet, S. & Funk, J.L. & Benson, C.L., 2016. "Quantitative empirical trends in technical performance," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 237-246.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.