IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0121635.html
   My bibliography  Save this article

Quantitative Determination of Technological Improvement from Patent Data

Author

Listed:
  • Christopher L Benson
  • Christopher L Magee

Abstract

The results in this paper establish that information contained in patents in a technological domain is strongly correlated with the rate of technological progress in that domain. The importance of patents in a domain, the recency of patents in a domain and the immediacy of patents in a domain are all strongly correlated with increases in the rate of performance improvement in the domain of interest. A patent metric that combines both importance and immediacy is not only highly correlated (r = 0.76, p = 2.6*10-6) with the performance improvement rate but the correlation is also very robust to domain selection and appears to have good predictive power for more than ten years into the future. Linear regressions with all three causal concepts indicate realistic value in practical use to estimate the important performance improvement rate of a technological domain.

Suggested Citation

  • Christopher L Benson & Christopher L Magee, 2015. "Quantitative Determination of Technological Improvement from Patent Data," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-23, April.
  • Handle: RePEc:plo:pone00:0121635
    DOI: 10.1371/journal.pone.0121635
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121635
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0121635&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0121635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bresnahan, Timothy F. & Trajtenberg, M., 1995. "General purpose technologies 'Engines of growth'?," Journal of Econometrics, Elsevier, vol. 65(1), pages 83-108, January.
    2. Rothaermel, Frank T. & Thursby, Marie, 2007. "The nanotech versus the biotech revolution: Sources of productivity in incumbent firm research," Research Policy, Elsevier, vol. 36(6), pages 832-849, July.
    3. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    4. Adam B. Jaffe & Josh Lerner, 2006. "Innovation and its Discontents," NBER Chapters, in: Innovation Policy and the Economy, Volume 6, pages 27-66, National Bureau of Economic Research, Inc.
    5. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    6. Murray, Fiona, 2004. "The role of academic inventors in entrepreneurial firms: sharing the laboratory life," Research Policy, Elsevier, vol. 33(4), pages 643-659, May.
    7. Murray, Fiona, 2002. "Innovation as co-evolution of scientific and technological networks: exploring tissue engineering," Research Policy, Elsevier, vol. 31(8-9), pages 1389-1403, December.
    8. Nordhaus, William D., 2007. "Two Centuries of Productivity Growth in Computing," The Journal of Economic History, Cambridge University Press, vol. 67(1), pages 128-159, March.
    9. Rebecca Henderson & Adam B. Jaffe & Manuel Trajtenberg, 1998. "Universities As A Source Of Commercial Technology: A Detailed Analysis Of University Patenting, 1965-1988," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 119-127, February.
    10. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    11. Béla Nagy & J Doyne Farmer & Quan M Bui & Jessika E Trancik, 2013. "Statistical Basis for Predicting Technological Progress," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    12. Sam Arts & Francesco Paolo Appio & Bart Looy, 2013. "Inventions shaping technological trajectories: do existing patent indicators provide a comprehensive picture?," Scientometrics, Springer;Akadémiai Kiadó, vol. 97(2), pages 397-419, November.
    13. Klevorick, Alvin K. & Levin, Richard C. & Nelson, Richard R. & Winter, Sidney G., 1995. "On the sources and significance of interindustry differences in technological opportunities," Research Policy, Elsevier, vol. 24(2), pages 185-205, March.
    14. Balconi, Margherita & Brusoni, Stefano & Orsenigo, Luigi, 2010. "In defence of the linear model: An essay," Research Policy, Elsevier, vol. 39(1), pages 1-13, February.
    15. Juan Alcácer & Wilbur Chung, 2007. "Location Strategies and Knowledge Spillovers," Management Science, INFORMS, vol. 53(5), pages 760-776, May.
    16. Gavin Sinclair & Steven Klepper & Wesley Cohen, 2000. "What's Experience Got to Do With It? Sources of Cost Reduction in a Large Specialty Chemicals Producer," Management Science, INFORMS, vol. 46(1), pages 28-45, January.
    17. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    18. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    19. Christopher L. Benson & Christopher L. Magee, 2013. "Erratum to: A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 83-83, July.
    20. Giovanni Valentini, 2012. "Measuring the effect of M&A on patenting quantity and quality," Strategic Management Journal, Wiley Blackwell, vol. 33(3), pages 336-346, March.
    21. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    22. William D. Nordhaus, 2014. "The Perils of the Learning Model for Modeling Endogenous Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    23. Schoenmakers, Wilfred & Duysters, Geert, 2010. "The technological origins of radical inventions," Research Policy, Elsevier, vol. 39(8), pages 1051-1059, October.
    24. Sendil K. Ethiraj, 2007. "Allocation of inventive effort in complex product systems," Strategic Management Journal, Wiley Blackwell, vol. 28(6), pages 563-584, June.
    25. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    26. Trajtenberg, Manuel, 1989. "The Welfare Analysis of Product Innovations, with an Application to Computed Tomography Scanners," Journal of Political Economy, University of Chicago Press, vol. 97(2), pages 444-479, April.
    27. Arthur, W. Brian, 2007. "The structure of invention," Research Policy, Elsevier, vol. 36(2), pages 274-287, March.
    28. Atul Nerkar, 2003. "Old Is Gold? The Value of Temporal Exploration in the Creation of New Knowledge," Management Science, INFORMS, vol. 49(2), pages 211-229, February.
    29. Christopher L. Benson & Christopher L. Magee, 2013. "A hybrid keyword and patent class methodology for selecting relevant sets of patents for a technological field," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 69-82, July.
    30. Ajay Agrawal & Rebecca Henderson, 2002. "Putting Patents in Context: Exploring Knowledge Transfer from MIT," Management Science, INFORMS, vol. 48(1), pages 44-60, January.
    31. Benson, Christopher L. & Magee, Christopher L., 2014. "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, Elsevier, vol. 68(C), pages 745-751.
    32. Richard C. Levin & Alvin K. Klevorick & Richard R. Nelson & Sidney G. Winter, 1987. "Appropriating the Returns from Industrial Research and Development," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 18(3, Specia), pages 783-832.
    33. Fischer, Timo & Leidinger, Jan, 2014. "Testing patent value indicators on directly observed patent value—An empirical analysis of Ocean Tomo patent auctions," Research Policy, Elsevier, vol. 43(3), pages 519-529.
    34. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yan & Zhang, Yiren & Hu, Jian & Wang, Zeyu, 2024. "Insight into the nexus between intellectual property pledge financing and enterprise innovation: A systematic analysis with multidimensional perspectives," International Review of Economics & Finance, Elsevier, vol. 93(PA), pages 700-719.
    2. Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2019. "Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 655-672.
    3. Verluise, Cyril & Cristelli, Gabriele & Higham, Kyle & de Rassenfosse, Gaetan, 2020. "The Missing 15 Percent of Patent Citations," SocArXiv x78ys, Center for Open Science.
    4. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    5. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    6. Yoon, Byungun & Magee, Christopher L., 2018. "Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 105-117.
    7. Mariani, Manuel Sebastian & Medo, Matúš & Lafond, François, 2019. "Early identification of important patents: Design and validation of citation network metrics," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 644-654.
    8. Higham, Kyle & de Rassenfosse, Gaétan & Jaffe, Adam B., 2021. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," Research Policy, Elsevier, vol. 50(4).
    9. Manuel Acosta & Daniel Coronado & Esther Ferrándiz & Manuel Jiménez, 2022. "Effects of knowledge spillovers between competitors on patent quality: what patent citations reveal about a global duopoly," The Journal of Technology Transfer, Springer, vol. 47(5), pages 1451-1487, October.
    10. Matthias Niggli & Christian Rutzer, 2023. "Digital technologies, technological improvement rates, and innovations “Made in Switzerland”," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-31, December.
    11. Triulzi, Giorgio & Alstott, Jeff & Magee, Christopher L., 2020. "Estimating technology performance improvement rates by mining patent data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    12. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    13. Deyu Li & Floor Alkemade & Koen Frenken & Gaston Heimeriks, 2023. "Catching up in clean energy technologies: a patent analysis," The Journal of Technology Transfer, Springer, vol. 48(2), pages 693-715, April.
    14. Hu, Zewen & Zhou, Xiji & Lin, Angela, 2023. "Evaluation and identification of potential high-value patents in the field of integrated circuits using a multidimensional patent indicators pre-screening strategy and machine learning approaches," Journal of Informetrics, Elsevier, vol. 17(2).
    15. Mariam Barry & Giorgio Triulzi & Christopher L. Magee, 2017. "Food Productivity Trends from Hybrid Corn: Statistical Analysis of Patents and Field-test data," Papers 1706.05911, arXiv.org.
    16. Abeliansky, Ana L. & Martínez-Zarzoso, Imnaculada & Prettner, Klaus, 2015. "The impact of 3D printing on trade and FDI," University of Göttingen Working Papers in Economics 262, University of Goettingen, Department of Economics.
    17. JongRoul Woo & Christopher L. Magee, 2017. "Exploring the relationship between technological improvement and innovation diffusion: An empirical test," Papers 1704.03597, arXiv.org, revised May 2018.
    18. Abeliansky, Ana Lucia & Martínez-Zarzoso, Inmaculada & Prettner, Klaus, 2020. "3D printing, international trade, and FDI," Economic Modelling, Elsevier, vol. 85(C), pages 288-306.
    19. Christopher L. Benson & Pranav D Sumanth & Alina P Colling, 2018. "A Quantitative Analysis of Possible Futures of Autonomous Transport," Papers 1806.01696, arXiv.org.
    20. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
    21. Mun, Changbae & Yoon, Sejun & Raghavan, Nagarajan & Hwang, Dongwook & Basnet, Subarna & Park, Hyunseok, 2021. "Function score-based technological trend analysis," Technovation, Elsevier, vol. 101(C).
    22. Magee, C.L. & Basnet, S. & Funk, J.L. & Benson, C.L., 2016. "Quantitative empirical trends in technical performance," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 237-246.
    23. Donghyun You & Hyunseok Park, 2018. "Developmental Trajectories in Electrical Steel Technology Using Patent Information," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    24. Christopher L. Benson & Christopher L. Magee, 2018. "Data-Driven Investment Decision-Making: Applying Moore's Law and S-Curves to Business Strategies," Papers 1805.06339, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benson, Christopher L. & Magee, Christopher L., 2014. "On improvement rates for renewable energy technologies: Solar PV, wind turbines, capacitors, and batteries," Renewable Energy, Elsevier, vol. 68(C), pages 745-751.
    2. Triulzi, Giorgio & Alstott, Jeff & Magee, Christopher L., 2020. "Estimating technology performance improvement rates by mining patent data," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    3. Corradini, Carlo & De Propris, Lisa, 2017. "Beyond local search: Bridging platforms and inter-sectoral technological integration," Research Policy, Elsevier, vol. 46(1), pages 196-206.
    4. Funk, Jeffrey L. & Magee, Christopher L., 2015. "Rapid improvements with no commercial production: How do the improvements occur?," Research Policy, Elsevier, vol. 44(3), pages 777-788.
    5. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    6. Singh, Anuraag & Triulzi, Giorgio & Magee, Christopher L., 2021. "Technological improvement rate predictions for all technologies: Use of patent data and an extended domain description," Research Policy, Elsevier, vol. 50(9).
    7. Antonio Malva & Stijn Kelchtermans & Bart Leten & Reinhilde Veugelers, 2015. "Basic science as a prescription for breakthrough inventions in the pharmaceutical industry," The Journal of Technology Transfer, Springer, vol. 40(4), pages 670-695, August.
    8. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    9. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    10. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    11. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    12. Leone, Maria Isabella & Messeni Petruzzelli, Antonio & Natalicchio, Angelo, 2022. "Boundary spanning through external technology acquisition: The moderating role of star scientists and upstream alliances," Technovation, Elsevier, vol. 116(C).
    13. Apa, Roberta & De Noni, Ivan & Orsi, Luigi & Sedita, Silvia Rita, 2018. "Knowledge space oddity: How to increase the intensity and relevance of the technological progress of European regions," Research Policy, Elsevier, vol. 47(9), pages 1700-1712.
    14. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    15. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    16. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    17. Jeffrey Funk, 2018. "Technology change, economic feasibility, and creative destruction: the case of new electronic products and services," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(1), pages 65-82.
    18. Magee, C.L. & Basnet, S. & Funk, J.L. & Benson, C.L., 2016. "Quantitative empirical trends in technical performance," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 237-246.
    19. William Arant & Dirk Fornahl & Nils Grashof & Kolja Hesse & Cathrin Söllner, 2019. "University-industry collaborations—The key to radical innovations? [Universität-Industrie-Kooperationen – Der Schlüssel zu radikalen Innovationen?]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 39(2), pages 119-141, October.
    20. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0121635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.