IDEAS home Printed from https://ideas.repec.org/r/spr/jogath/v24y1995i2p179-86.html
   My bibliography  Save this item

Alternative Axiomatic Characterizations of the Shapley and Banzhaf Values

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sylvain Béal & Marc Deschamps & Mostapha Diss & Rodrigue Tido Takeng, 2024. "Cooperative games with diversity constraints," Working Papers hal-04447373, HAL.
  2. Sanchez-Soriano, Joaquin, 2003. "The pairwise egalitarian solution," European Journal of Operational Research, Elsevier, vol. 150(1), pages 220-231, October.
  3. Oriol Tejada & Mikel Álvarez-Mozos, 2017. "Games with Graph Restricted Communication and Levels Structure of Cooperation," UB School of Economics Working Papers 2017/363, University of Barcelona School of Economics.
  4. Annick Laruelle & Federico Valenciano, 2001. "Shapley-Shubik and Banzhaf Indices Revisited," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 89-104, February.
  5. Francesc Carreras & Antonio Magaña, 2008. "The Shapley–Shubik index for simple games with multiple alternatives," Annals of Operations Research, Springer, vol. 158(1), pages 81-97, February.
  6. Alonso-Meijide, J.M. & Casas-Mendez, B. & Holler, M.J. & Lorenzo-Freire, S., 2008. "Computing power indices: Multilinear extensions and new characterizations," European Journal of Operational Research, Elsevier, vol. 188(2), pages 540-554, July.
  7. Kamijo, Yoshio & Kongo, Takumi, 2012. "Whose deletion does not affect your payoff? The difference between the Shapley value, the egalitarian value, the solidarity value, and the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 216(3), pages 638-646.
  8. Manfred Besner, 2020. "Parallel axiomatizations of weighted and multiweighted Shapley values, random order values, and the Harsanyi set," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 55(1), pages 193-212, June.
  9. Carreras, Francesc & Giménez, José Miguel, 2010. "Semivalues: power,potential and multilinear extensions," MPRA Paper 27620, University Library of Munich, Germany.
  10. Lorenzo-Freire, S. & Alonso-Meijide, J.M. & Casas-Mendez, B. & Fiestras-Janeiro, M.G., 2007. "Characterizations of the Deegan-Packel and Johnston power indices," European Journal of Operational Research, Elsevier, vol. 177(1), pages 431-444, February.
  11. André Casajus, 2014. "Collusion, quarrel, and the Banzhaf value," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(1), pages 1-11, February.
  12. Conrado M. Manuel & Daniel Martín, 2021. "A Monotonic Weighted Banzhaf Value for Voting Games," Mathematics, MDPI, vol. 9(12), pages 1-23, June.
  13. J.M. Alonso‐Meijide & M.G. Fiestras‐Janeiro, 2006. "The Banzhaf value and communication situations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(3), pages 198-203, April.
  14. Josep Freixas & Montserrat Pons, 2021. "An Appropriate Way to Extend the Banzhaf Index for Multiple Levels of Approval," Group Decision and Negotiation, Springer, vol. 30(2), pages 447-462, April.
  15. Bernardi Mauro & Roy Cerqueti & Arsen Palestini, 2016. "Allocation of risk capital in a cost cooperative game induced by a modified Expected Shortfall," Papers 1608.02365, arXiv.org.
  16. Encarnaciön Algaba & Sylvain Béal & Eric Rémila & Phillippe Solal, 2018. "Harsanyi power solutions for cooperative games on voting structures," Working Papers 2018-05, CRESE.
  17. Carreras, Francesc & Freixas, Josep & Puente, Maria Albina, 2003. "Semivalues as power indices," European Journal of Operational Research, Elsevier, vol. 149(3), pages 676-687, September.
  18. Jilei Shi & Erfang Shan, 2021. "The Banzhaf value for generalized probabilistic communication situations," Annals of Operations Research, Springer, vol. 301(1), pages 225-244, June.
  19. Tejada, O. & Álvarez-Mozos, M., 2018. "Graphs and (levels of) cooperation in games: Two ways how to allocate the surplus," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 114-122.
  20. Carreras, Francesc & Giménez, José Miguel, 2011. "Power and potential maps induced by any semivalue: Some algebraic properties and computation by multilinear extensions," European Journal of Operational Research, Elsevier, vol. 211(1), pages 148-159, May.
  21. de Clippel, Geoffroy, 2018. "Membership separability: A new axiomatization of the Shapley value," Games and Economic Behavior, Elsevier, vol. 108(C), pages 125-129.
  22. André Casajus, 2011. "Marginality, differential marginality, and the Banzhaf value," Theory and Decision, Springer, vol. 71(3), pages 365-372, September.
  23. Margarita Domènech & José Miguel Giménez & María Albina Puente, 2022. "Weak null, necessary defender and necessary detractor players: characterizations of the Banzhaf and the Shapley bisemivalues," Annals of Operations Research, Springer, vol. 318(2), pages 889-910, November.
  24. Meinhardt, Holger Ingmar, 2021. "Disentangle the Florentine Families Network by the Pre-Kernel," MPRA Paper 106482, University Library of Munich, Germany.
  25. Amer, Rafael & Carreras, Francese & Gimenez, Jose Miguel, 2002. "The modified Banzhaf value for games with coalition structure: an axiomatic characterization," Mathematical Social Sciences, Elsevier, vol. 43(1), pages 45-54, January.
  26. Amer, Rafael & Gimenez, Jose Miguel, 2006. "An axiomatic characterization for regular semivalues," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 217-226, March.
  27. Francesc Carreras & María Albina Puente, 2018. "A note on multinomial probabilistic values," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 164-186, April.
  28. Carreras, Francesc, 2005. "A decisiveness index for simple games," European Journal of Operational Research, Elsevier, vol. 163(2), pages 370-387, June.
  29. José M. Alonso-Meijide & Julián Costa & Ignacio García-Jurado, 2019. "Null, Nullifying, and Necessary Agents: Parallel Characterizations of the Banzhaf and Shapley Values," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 1027-1035, March.
  30. Josep Freixas, 2020. "The Banzhaf Value for Cooperative and Simple Multichoice Games," Group Decision and Negotiation, Springer, vol. 29(1), pages 61-74, February.
  31. Borkotokey, Surajit & Kumar, Rajnish & Sarangi, Sudipta, 2015. "A solution concept for network games: The role of multilateral interactions," European Journal of Operational Research, Elsevier, vol. 243(3), pages 912-920.
  32. Giulia Bernardi, 2018. "A New Axiomatization of the Banzhaf Index for Games with Abstention," Group Decision and Negotiation, Springer, vol. 27(1), pages 165-177, February.
  33. Dragan, Irinel, 1996. "New mathematical properties of the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 95(2), pages 451-463, December.
  34. Josep Freixas & Roberto Lucchetti, 2016. "Power in voting rules with abstention: an axiomatization of a two components power index," Annals of Operations Research, Springer, vol. 244(2), pages 455-474, September.
  35. Federico Valenciano & Annick Laruelle, 2003. "Potential, Value And Probability," Working Papers. Serie AD 2003-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  36. Emilio Calvo, 2021. "Redistribution of tax resources: a cooperative game theory approach," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(4), pages 633-686, December.
  37. Rafael Amer & José Miguel Giménez, 2007. "Technical note: Characterization of binomial semivalues through delegation games," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 702-708, September.
  38. Francesc Carreras & María Albina Puente, 2012. "Symmetric Coalitional Binomial Semivalues," Group Decision and Negotiation, Springer, vol. 21(5), pages 637-662, September.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.