IDEAS home Printed from https://ideas.repec.org/r/spr/jogath/v20y1991i2p183-90.html
   My bibliography  Save this item

On the Symmetric and Weighted Shapley Values

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. René van den Brink, 2002. "An axiomatization of the Shapley value using a fairness property," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(3), pages 309-319.
  2. van den Brink, René & Pintér, Miklós, 2015. "On axiomatizations of the Shapley value for assignment games," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 110-114.
  3. René Brink & Yukihiko Funaki, 2015. "Implementation and axiomatization of discounted Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(2), pages 329-344, September.
  4. Casajus, André, 2021. "Weakly balanced contributions and the weighted Shapley values," Journal of Mathematical Economics, Elsevier, vol. 94(C).
  5. Laszlo A. Koczy & Miklos Pinter, 2011. "The men who weren't even there: Legislative voting with absentees," CERS-IE WORKING PAPERS 1129, Institute of Economics, Centre for Economic and Regional Studies.
  6. Ghintran, Amandine, 2013. "Weighted position values," Mathematical Social Sciences, Elsevier, vol. 65(3), pages 157-163.
  7. Casajus, André, 2019. "Relaxations of symmetry and the weighted Shapley values," Economics Letters, Elsevier, vol. 176(C), pages 75-78.
  8. Manfred Besner, 2019. "Axiomatizations of the proportional Shapley value," Theory and Decision, Springer, vol. 86(2), pages 161-183, March.
  9. Hou, Dongshuang & Sun, Hao & Sun, Panfei & Driessen, Theo, 2018. "A note on the Shapley value for airport cost pooling game," Games and Economic Behavior, Elsevier, vol. 108(C), pages 162-169.
  10. van den Brink, Rene, 2007. "Null or nullifying players: The difference between the Shapley value and equal division solutions," Journal of Economic Theory, Elsevier, vol. 136(1), pages 767-775, September.
  11. Sylvain Béal & Mostapha Diss & Rodrigue Tido Takeng, 2024. "New axiomatizations of the Diversity Owen and Shapley values," Working Papers 2024-09, CRESE.
  12. Dongshuang Hou & Aymeric Lardon & Hao Sun, 2020. "On the Internal and External Stability of Coalitions and Application to Group Purchasing Organizations," Working Papers halshs-02860639, HAL.
  13. Nowak, A.S. & Radzik, T., 1995. "On axiomatizations of the weighted Shapley values," Games and Economic Behavior, Elsevier, vol. 8(2), pages 389-405.
  14. Khmelnitskaya, Anna B., 1999. "Marginalist and efficient values for TU games," Mathematical Social Sciences, Elsevier, vol. 38(1), pages 45-54, July.
  15. Filipe Bandeiras & Álvaro Gomes & Mário Gomes & Paulo Coelho, 2023. "Application and Challenges of Coalitional Game Theory in Power Systems for Sustainable Energy Trading Communities," Energies, MDPI, vol. 16(24), pages 1-42, December.
  16. Sylvain Béal & Sylvain Ferrières & Adriana Navarro‐Ramos & Philippe Solal, 2023. "Axiomatic characterizations of the family of Weighted priority values," International Journal of Economic Theory, The International Society for Economic Theory, vol. 19(4), pages 787-816, December.
  17. Billot, Antoine & Thisse, Jacques-Francois, 2005. "How to share when context matters: The Mobius value as a generalized solution for cooperative games," Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 1007-1029, December.
  18. Briec, Walter & Mussard, Stéphane, 2014. "Efficient firm groups: Allocative efficiency in cooperative games," European Journal of Operational Research, Elsevier, vol. 239(1), pages 286-296.
  19. Li, Wenzhong & Xu, Genjiu & van den Brink, René, 2024. "Sign properties and axiomatizations of the weighted division values," Journal of Mathematical Economics, Elsevier, vol. 112(C).
  20. Márkus, Judit & Pintér, Miklós & Radványi, Anna, 2011. "The Shapley value for airport and irrigation games," MPRA Paper 30031, University Library of Munich, Germany.
  21. van den Brink, J.R., 1999. "An Axiomatization of the Shapley Value Using a Fairness Property," Other publications TiSEM 0090365c-9bab-4367-b660-5, Tilburg University, School of Economics and Management.
  22. repec:zbw:rwirep:0212 is not listed on IDEAS
  23. Koji Yokote, 2015. "Weak addition invariance and axiomatization of the weighted Shapley value," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(2), pages 275-293, May.
  24. Radzik, Tadeusz, 2012. "A new look at the role of players’ weights in the weighted Shapley value," European Journal of Operational Research, Elsevier, vol. 223(2), pages 407-416.
  25. Xun-Feng Hu, 2021. "New axiomatizations of the Owen value," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 585-603, June.
  26. Takaaki Abe & Satoshi Nakada, 2019. "The weighted-egalitarian Shapley values," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(2), pages 197-213, February.
  27. von Schnurbein, Barbara, 2010. "The Core of an Extended Tree Game: A New Characterisation," Ruhr Economic Papers 212, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  28. Barbara von Schnurbein, 2010. "The Core of an Extended Tree Game: A New Characterisation," Ruhr Economic Papers 0212, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
  29. Takaaki Abe & Satoshi Nakada, 2023. "Core stability of the Shapley value for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 60(4), pages 523-543, May.
  30. Casajus, André, 2018. "Symmetry, mutual dependence, and the weighted Shapley values," Journal of Economic Theory, Elsevier, vol. 178(C), pages 105-123.
  31. Estela Sánchez-Rodríguez & Miguel Ángel Mirás Calvo & Carmen Quinteiro Sandomingo & Iago Núñez Lugilde, 2024. "Coalition-weighted Shapley values," International Journal of Game Theory, Springer;Game Theory Society, vol. 53(2), pages 547-577, June.
  32. Borkotokey, Surajit & Choudhury, Dhrubajit & Gogoi, Loyimee & Kumar, Rajnish, 2020. "Group contributions in TU-games: A class of k-lateral Shapley values," European Journal of Operational Research, Elsevier, vol. 286(2), pages 637-648.
  33. S. Zeynep Alparslan Gök & René van den Brink & Osman Palancı, 2024. "Moore interval subtraction and interval solutions for TU-games," Annals of Operations Research, Springer, vol. 343(1), pages 293-311, December.
  34. Takaaki Abe & Satoshi Nakada, 2018. "Generalized Potentials, Value, and Core," Discussion Paper Series DP2018-19, Research Institute for Economics & Business Administration, Kobe University.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.