My bibliography
Save this item
Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ling Qi & Matloob Khushi & Josiah Poon, 2021. "Event-Driven LSTM For Forex Price Prediction," Papers 2102.01499, arXiv.org.
- Zhiyuan Pei & Jianqi Yan & Jin Yan & Bailing Yang & Ziyuan Li & Lin Zhang & Xin Liu & Yang Zhang, 2024. "A Stock Price Prediction Approach Based on Time Series Decomposition and Multi-Scale CNN using OHLCT Images," Papers 2410.19291, arXiv.org, revised Oct 2024.
- Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
- Catalin Stoean & Wiesław Paja & Ruxandra Stoean & Adrian Sandita, 2019. "Deep architectures for long-term stock price prediction with a heuristic-based strategy for trading simulations," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-19, October.
- Hakan Gunduz, 2021. "An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
- Antonello Rosato & Rodolfo Araneo & Amedeo Andreotti & Federico Succetti & Massimo Panella, 2021. "2-D Convolutional Deep Neural Network for the Multivariate Prediction of Photovoltaic Time Series," Energies, MDPI, vol. 14(9), pages 1-18, April.
- Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
- Xiaodong Zhang & Suhui Liu & Xin Zheng, 2021. "Stock Price Movement Prediction Based on a Deep Factorization Machine and the Attention Mechanism," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
- Carlos A. Reyes Pérez & Miguel E. Iglesias Martínez & Jose Guerra-Carmenate & Humberto Michinel Álvarez & Eduardo Balvis & Fernando Giménez Palomares & Pedro Fernández de Córdoba, 2023. "Indoor Air Quality Analysis Using Recurrent Neural Networks: A Case Study of Environmental Variables," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
- Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
- Satya Verma & Satya Prakash Sahu & Tirath Prasad Sahu, 2024. "Two-Stage Hybrid Feature Selection Approach Using Levy’s Flight Based Chicken Swarm Optimization for Stock Market Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2193-2224, June.
- V. Lanzetta, 2024. "Transfer learning for financial data predictions: a systematic review," Papers 2409.17183, arXiv.org.
- Yanyan Cui & Lixin Liu, 2022. "Investor sentiment-aware prediction model for P2P lending indicators based on LSTM," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.
- Li, Houjian & Zhou, Deheng & Hu, Jiayu & Li, Junwen & Su, Mengying & Guo, Lili, 2023. "Forecasting the realized volatility of Energy Stock Market: A multimodel comparison," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
- Peng, Shiliang & Fan, Lin & Zhang, Li & Su, Huai & He, Yuxuan & He, Qian & Wang, Xiao & Yu, Dejun & Zhang, Jinjun, 2024. "Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network," Energy, Elsevier, vol. 301(C).
- Supriya Bajpai, 2021. "Application of deep reinforcement learning for Indian stock trading automation," Papers 2106.16088, arXiv.org.
- Akash Doshi & Alexander Issa & Puneet Sachdeva & Sina Rafati & Somnath Rakshit, 2020. "Deep Stock Predictions," Papers 2006.04992, arXiv.org.
- Rui Zhang & Zhen Guo & Yujie Meng & Songwang Wang & Shaoqiong Li & Ran Niu & Yu Wang & Qing Guo & Yonghong Li, 2021. "Comparison of ARIMA and LSTM in Forecasting the Incidence of HFMD Combined and Uncombined with Exogenous Meteorological Variables in Ningbo, China," IJERPH, MDPI, vol. 18(11), pages 1-14, June.
- Simon Liebermann & Jung-Sup Um & YoungSeok Hwang & Stephan Schlüter, 2021. "Performance Evaluation of Neural Network-Based Short-Term Solar Irradiation Forecasts," Energies, MDPI, vol. 14(11), pages 1-21, May.
- Kaushal Attaluri & Mukesh Tripathi & Srinithi Reddy & Shivendra, 2024. "News-Driven Stock Price Forecasting in Indian Markets: A Comparative Study of Advanced Deep Learning Models," Papers 2411.05788, arXiv.org.
- Javier Oliver Muncharaz, 2020. "Comparing classic time series models and the LSTM recurrent neural network: An application to S&P 500 stocks [Comparativa de los models clásicos de series temporales con la red neuronal recurrente ," Post-Print hal-03149342, HAL.
- Tashreef Muhammad & Tahsin Aziz & Mohammad Shafiul Alam, 2023. "Utilizing Technical Data to Discover Similar Companies in Dhaka Stock Exchange," Papers 2301.04455, arXiv.org.
- Nestoras Chalkidis & Rahul Savani, 2021. "Trading via Selective Classification," Papers 2110.14914, arXiv.org, revised Oct 2021.
- Gwiman Bak & Youngchul Bae, 2020. "Predicting the Amount of Electric Power Transaction Using Deep Learning Methods," Energies, MDPI, vol. 13(24), pages 1-30, December.
- Jun Zhang & Lan Li & Wei Chen, 2021. "Predicting Stock Price Using Two-Stage Machine Learning Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1237-1261, April.
- Mimansa Rana & Nanxiang Mao & Ming Ao & Xiaohui Wu & Poning Liang & Matloob Khushi, 2021. "Clustering and attention model based for intelligent trading," Papers 2107.06782, arXiv.org, revised Aug 2021.
- Lee, Donghyun & Kim, Mingyu & Lee, Beomhui & Chae, Sangwon & Kwon, Sungjun & Kang, Sungwon, 2022. "Integrated explainable deep learning prediction of harmful algal blooms," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
- Jireh Yi-Le Chan & Steven Mun Hong Leow & Khean Thye Bea & Wai Khuen Cheng & Seuk Wai Phoong & Zeng-Wei Hong & Yen-Lin Chen, 2022. "Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review," Mathematics, MDPI, vol. 10(8), pages 1-17, April.
- Singh, Sriramjee, 2020. "Predicting CBOT Corn Futures Prices by applying ML methods on Weather Data," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304595, Agricultural and Applied Economics Association.
- Andrew Brim & Nicholas S Flann, 2022. "Deep reinforcement learning stock market trading, utilizing a CNN with candlestick images," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-25, February.
- Shalini Sharma & Angshul Majumdar & Emilie Chouzenoux & Victor Elvira, 2023. "Deep State-Space Model for Predicting Cryptocurrency Price," Papers 2311.14731, arXiv.org.