IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i24p4872-d1294081.html
   My bibliography  Save this article

Indoor Air Quality Analysis Using Recurrent Neural Networks: A Case Study of Environmental Variables

Author

Listed:
  • Carlos A. Reyes Pérez

    (Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain)

  • Miguel E. Iglesias Martínez

    (Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain
    Grupo de Ingeniería Física, Escuela de Ingeniería Aeronáutica y del Espacio, Universidad de Vigo, Edif. Manuel Martínez Risco, Campus de As Lagoas, 32004 Ourense, Spain)

  • Jose Guerra-Carmenate

    (Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain)

  • Humberto Michinel Álvarez

    (Grupo de Ingeniería Física, Escuela de Ingeniería Aeronáutica y del Espacio, Universidad de Vigo, Edif. Manuel Martínez Risco, Campus de As Lagoas, 32004 Ourense, Spain)

  • Eduardo Balvis

    (Departamento de Ingeniería de Sistemas y Automática, Escuela Superior de Ingeniería Informática, Universidade de Vigo, Edificio Politécnico s/n, 32004 Ourense, Spain)

  • Fernando Giménez Palomares

    (Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain)

  • Pedro Fernández de Córdoba

    (Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain)

Abstract

In the pursuit of energy efficiency and reduced environmental impact, adequate ventilation in enclosed spaces is essential. This study presents a hybrid neural network model designed for monitoring and prediction of environmental variables. The system comprises two phases: An IoT hardware–software platform for data acquisition and decision-making and a hybrid model combining short-term memory and convolutional recurrent structures. The results are promising and hold potential for integration into parallel processing AI architectures.

Suggested Citation

  • Carlos A. Reyes Pérez & Miguel E. Iglesias Martínez & Jose Guerra-Carmenate & Humberto Michinel Álvarez & Eduardo Balvis & Fernando Giménez Palomares & Pedro Fernández de Córdoba, 2023. "Indoor Air Quality Analysis Using Recurrent Neural Networks: A Case Study of Environmental Variables," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4872-:d:1294081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/24/4872/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/24/4872/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandra Cincinelli & Tania Martellini, 2017. "Indoor Air Quality and Health," IJERPH, MDPI, vol. 14(11), pages 1-5, October.
    2. Stuart Batterman, 2017. "Review and Extension of CO 2 -Based Methods to Determine Ventilation Rates with Application to School Classrooms," IJERPH, MDPI, vol. 14(2), pages 1-22, February.
    3. Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Langiano & Maria Ferrara & Lavinia Falese & Liana Lanni & Pierluigi Diotaiuti & Tommaso Di Libero & Elisabetta De Vito, 2024. "Assessment of Indoor Air Quality in School Facilities: An Educational Experience of Pathways for Transversal Skills and Orientation (PCTO)," Sustainability, MDPI, vol. 16(15), pages 1-14, August.
    2. Xiang Wu & Lindong Liu & Xiaowei Luo & Jianwu Chen & Jingwen Dai, 2018. "Study on Flow Field Characteristics of the 90° Rectangular Elbow in the Exhaust Hood of a Uniform Push–Pull Ventilation Device," IJERPH, MDPI, vol. 15(12), pages 1-12, December.
    3. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    4. Christiane Berger & Ardeshir Mahdavi & Elie Azar & Karol Bandurski & Leonidas Bourikas & Timuçin Harputlugil & Runa T. Hellwig & Ricardo Forgiarini Rupp & Marcel Schweiker, 2022. "Reflections on the Evidentiary Basis of Indoor Air Quality Standards," Energies, MDPI, vol. 15(20), pages 1-18, October.
    5. Diana D’Agostino & Martina Di Mascolo & Federico Minelli & Francesco Minichiello, 2024. "A New Tailored Approach to Calculate the Optimal Number of Outdoor Air Changes in School Building HVAC Systems in the Post-COVID-19 Era," Energies, MDPI, vol. 17(11), pages 1-36, June.
    6. Mengting Liao & Yi Xiao & Shenxin Li & Juan Su & Ji Li & Bin Zou & Xiang Chen & Minxue Shen, 2022. "Synergistic Effects between Ambient Air Pollution and Second-Hand Smoke on Inflammatory Skin Diseases in Chinese Adolescents," IJERPH, MDPI, vol. 19(16), pages 1-12, August.
    7. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    8. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    9. Peng, Shiliang & Fan, Lin & Zhang, Li & Su, Huai & He, Yuxuan & He, Qian & Wang, Xiao & Yu, Dejun & Zhang, Jinjun, 2024. "Spatio-temporal prediction of total energy consumption in multiple regions using explainable deep neural network," Energy, Elsevier, vol. 301(C).
    10. Tashreef Muhammad & Tahsin Aziz & Mohammad Shafiul Alam, 2023. "Utilizing Technical Data to Discover Similar Companies in Dhaka Stock Exchange," Papers 2301.04455, arXiv.org.
    11. Enrique Cano-Suñén & Ignacio Martínez & Ángel Fernández & Belén Zalba & Roberto Casas, 2023. "Internet of Things (IoT) in Buildings: A Learning Factory," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    12. Da-Jiun Wei & Wen-Te Liu & Huin-Tsung Chin & Ching-Hsing Lin & I-Chun Chen & Yi-Tang Chang, 2021. "An Investigation of Airborne Bioaerosols and Endotoxins Present in Indoor Traditional Wet Markets before and after Operation in Taiwan: A Case Study," IJERPH, MDPI, vol. 18(6), pages 1-21, March.
    13. Richard Nagy & Ľudmila Mečiarová & Silvia Vilčeková & Eva Krídlová Burdová & Danica Košičanová, 2019. "Investigation of a Ventilation System for Energy Efficiency and Indoor Environmental Quality in a Renovated Historical Building: A Case Study," IJERPH, MDPI, vol. 16(21), pages 1-17, October.
    14. Laurentiu Predescu & Daniel Dunea, 2021. "Performance Evaluation of Particulate Matter and Indoor Microclimate Monitors in University Classrooms under COVID-19 Restrictions," IJERPH, MDPI, vol. 18(14), pages 1-19, July.
    15. Ewa Brągoszewska & Izabela Biedroń, 2018. "Indoor Air Quality and Potential Health Risk Impacts of Exposure to Antibiotic Resistant Bacteria in an Office Rooms in Southern Poland," IJERPH, MDPI, vol. 15(11), pages 1-17, November.
    16. Akash Doshi & Alexander Issa & Puneet Sachdeva & Sina Rafati & Somnath Rakshit, 2020. "Deep Stock Predictions," Papers 2006.04992, arXiv.org.
    17. Andrew Brim & Nicholas S Flann, 2022. "Deep reinforcement learning stock market trading, utilizing a CNN with candlestick images," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-25, February.
    18. Zhiyuan Pei & Jianqi Yan & Jin Yan & Bailing Yang & Ziyuan Li & Lin Zhang & Xin Liu & Yang Zhang, 2024. "A Stock Price Prediction Approach Based on Time Series Decomposition and Multi-Scale CNN using OHLCT Images," Papers 2410.19291, arXiv.org, revised Oct 2024.
    19. Filippo Graziani & Rossana Izzetti & Lisa Lardani & Michele Totaro & Angelo Baggiani, 2021. "Experimental Evaluation of Aerosol Production after Dental Ultrasonic Instrumentation: An Analysis on Fine Particulate Matter Perturbation," IJERPH, MDPI, vol. 18(7), pages 1-10, March.
    20. Simon Liebermann & Jung-Sup Um & YoungSeok Hwang & Stephan Schlüter, 2021. "Performance Evaluation of Neural Network-Based Short-Term Solar Irradiation Forecasts," Energies, MDPI, vol. 14(11), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4872-:d:1294081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.