IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i24p4872-d1294081.html
   My bibliography  Save this article

Indoor Air Quality Analysis Using Recurrent Neural Networks: A Case Study of Environmental Variables

Author

Listed:
  • Carlos A. Reyes Pérez

    (Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain)

  • Miguel E. Iglesias Martínez

    (Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain
    Grupo de Ingeniería Física, Escuela de Ingeniería Aeronáutica y del Espacio, Universidad de Vigo, Edif. Manuel Martínez Risco, Campus de As Lagoas, 32004 Ourense, Spain)

  • Jose Guerra-Carmenate

    (Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain)

  • Humberto Michinel Álvarez

    (Grupo de Ingeniería Física, Escuela de Ingeniería Aeronáutica y del Espacio, Universidad de Vigo, Edif. Manuel Martínez Risco, Campus de As Lagoas, 32004 Ourense, Spain)

  • Eduardo Balvis

    (Departamento de Ingeniería de Sistemas y Automática, Escuela Superior de Ingeniería Informática, Universidade de Vigo, Edificio Politécnico s/n, 32004 Ourense, Spain)

  • Fernando Giménez Palomares

    (Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain)

  • Pedro Fernández de Córdoba

    (Grupo de Modelización Interdisciplinar, InterTech, Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera, s/n, 46022 València, Spain)

Abstract

In the pursuit of energy efficiency and reduced environmental impact, adequate ventilation in enclosed spaces is essential. This study presents a hybrid neural network model designed for monitoring and prediction of environmental variables. The system comprises two phases: An IoT hardware–software platform for data acquisition and decision-making and a hybrid model combining short-term memory and convolutional recurrent structures. The results are promising and hold potential for integration into parallel processing AI architectures.

Suggested Citation

  • Carlos A. Reyes Pérez & Miguel E. Iglesias Martínez & Jose Guerra-Carmenate & Humberto Michinel Álvarez & Eduardo Balvis & Fernando Giménez Palomares & Pedro Fernández de Córdoba, 2023. "Indoor Air Quality Analysis Using Recurrent Neural Networks: A Case Study of Environmental Variables," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4872-:d:1294081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/24/4872/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/24/4872/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandra Cincinelli & Tania Martellini, 2017. "Indoor Air Quality and Health," IJERPH, MDPI, vol. 14(11), pages 1-5, October.
    2. Stuart Batterman, 2017. "Review and Extension of CO 2 -Based Methods to Determine Ventilation Rates with Application to School Classrooms," IJERPH, MDPI, vol. 14(2), pages 1-22, February.
    3. Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Langiano & Maria Ferrara & Lavinia Falese & Liana Lanni & Pierluigi Diotaiuti & Tommaso Di Libero & Elisabetta De Vito, 2024. "Assessment of Indoor Air Quality in School Facilities: An Educational Experience of Pathways for Transversal Skills and Orientation (PCTO)," Sustainability, MDPI, vol. 16(15), pages 1-14, August.
    2. Christiane Berger & Ardeshir Mahdavi & Elie Azar & Karol Bandurski & Leonidas Bourikas & Timuçin Harputlugil & Runa T. Hellwig & Ricardo Forgiarini Rupp & Marcel Schweiker, 2022. "Reflections on the Evidentiary Basis of Indoor Air Quality Standards," Energies, MDPI, vol. 15(20), pages 1-18, October.
    3. Mengting Liao & Yi Xiao & Shenxin Li & Juan Su & Ji Li & Bin Zou & Xiang Chen & Minxue Shen, 2022. "Synergistic Effects between Ambient Air Pollution and Second-Hand Smoke on Inflammatory Skin Diseases in Chinese Adolescents," IJERPH, MDPI, vol. 19(16), pages 1-12, August.
    4. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    5. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Tashreef Muhammad & Tahsin Aziz & Mohammad Shafiul Alam, 2023. "Utilizing Technical Data to Discover Similar Companies in Dhaka Stock Exchange," Papers 2301.04455, arXiv.org.
    7. Richard Nagy & Ľudmila Mečiarová & Silvia Vilčeková & Eva Krídlová Burdová & Danica Košičanová, 2019. "Investigation of a Ventilation System for Energy Efficiency and Indoor Environmental Quality in a Renovated Historical Building: A Case Study," IJERPH, MDPI, vol. 16(21), pages 1-17, October.
    8. Akash Doshi & Alexander Issa & Puneet Sachdeva & Sina Rafati & Somnath Rakshit, 2020. "Deep Stock Predictions," Papers 2006.04992, arXiv.org.
    9. Andrew Brim & Nicholas S Flann, 2022. "Deep reinforcement learning stock market trading, utilizing a CNN with candlestick images," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-25, February.
    10. Zhiyuan Pei & Jianqi Yan & Jin Yan & Bailing Yang & Ziyuan Li & Lin Zhang & Xin Liu & Yang Zhang, 2024. "A Stock Price Prediction Approach Based on Time Series Decomposition and Multi-Scale CNN using OHLCT Images," Papers 2410.19291, arXiv.org, revised Oct 2024.
    11. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    12. Ricky Camplain & Monica R. Lininger & Julie A. Baldwin & Robert T. Trotter, 2021. "Cardiovascular Risk Factors among Individuals Incarcerated in an Arizona County Jail," IJERPH, MDPI, vol. 18(13), pages 1-13, June.
    13. Roberto Albertini & Maria Eugenia Colucci & Isabella Viani & Emanuela Capobianco & Michele Serpentino & Alessia Coluccia & Mostafa Mohieldin Mahgoub Ibrahim & Roberta Zoni & Paola Affanni & Licia Vero, 2024. "Study on the Effectiveness of a Copper Electrostatic Filtration System “Aerok 1.0” for Air Disinfection," IJERPH, MDPI, vol. 21(9), pages 1-12, September.
    14. Sonnia Parra & Hanns de la Fuente-Mella & Andrea González-Rojas & Manuel A. Bravo, 2024. "Exposure to Environmental Pollution in Schools of Puchuncaví, Chile: Characterization of Heavy Metals, Health Risk Assessment, and Effects on Children’s Academic Performance," Sustainability, MDPI, vol. 16(6), pages 1-31, March.
    15. Nestoras Chalkidis & Rahul Savani, 2021. "Trading via Selective Classification," Papers 2110.14914, arXiv.org, revised Oct 2021.
    16. Yanyan Cui & Lixin Liu, 2022. "Investor sentiment-aware prediction model for P2P lending indicators based on LSTM," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.
    17. Wenhao Chen & Zhong-Min Wang & Kyle Peerless & Elon Ullman & Mark J. Mendell & David Putney & Jeff Wagner & Kazukiyo Kumagai, 2024. "Monitoring of Ventilation, Portable Air Cleaner Operation, and Particulate Matter in California Classrooms: A Pilot Study," Sustainability, MDPI, vol. 16(5), pages 1-18, March.
    18. Chanhyung Shim & Goopyo Hong, 2023. "Airtightness Assessment under Several Low-Pressure Differences in Non-Residential Buildings," Energies, MDPI, vol. 16(19), pages 1-13, September.
    19. Lei Zhou & Yuqi Zhang & Jian Yu & Guiling Wang & Zhizhong Liu & Sira Yongchareon & Nancy Wang, 2025. "LLM-Augmented Linear Transformer–CNN for Enhanced Stock Price Prediction," Mathematics, MDPI, vol. 13(3), pages 1-18, January.
    20. Satya Verma & Satya Prakash Sahu & Tirath Prasad Sahu, 2024. "Two-Stage Hybrid Feature Selection Approach Using Levy’s Flight Based Chicken Swarm Optimization for Stock Market Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2193-2224, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4872-:d:1294081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.