My bibliography
Save this item
Random Forests for Global and Regional Crop Yield Predictions
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Helder Fraga & Teresa R. Freitas & Marco Moriondo & Daniel Molitor & João A. Santos, 2024. "Determining the Climatic Drivers for Wine Production in the Côa Region (Portugal) Using a Machine Learning Approach," Land, MDPI, vol. 13(6), pages 1-16, May.
- Jaturong Som-ard & Savittri Ratanopad Suwanlee & Dusadee Pinasu & Surasak Keawsomsee & Kemin Kasa & Nattawut Seesanhao & Sarawut Ninsawat & Enrico Borgogno-Mondino & Filippo Sarvia, 2024. "Evaluating Sugarcane Yield Estimation in Thailand Using Multi-Temporal Sentinel-2 and Landsat Data Together with Machine-Learning Algorithms," Land, MDPI, vol. 13(9), pages 1-19, September.
- Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021.
"Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages,"
Climatic Change, Springer, vol. 169(3), pages 1-19, December.
- Schierhorn, Florian & Hofmann, Max & Gagalyuk, Taras & Ostapchuk, Igor & Müller, Daniel, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 169.
- Li, Siyi & Wang, Bin & Feng, Puyu & Liu, De Li & Li, Linchao & Shi, Lijie & Yu, Qiang, 2022. "Assessing climate vulnerability of historical wheat yield in south-eastern Australia's wheat belt," Agricultural Systems, Elsevier, vol. 196(C).
- Che-Hao Chang & Jason Lin & Jia-Wei Chang & Yu-Shun Huang & Ming-Hsin Lai & Yen-Jen Chang, 2024. "Hybrid Deep Neural Networks with Multi-Tasking for Rice Yield Prediction Using Remote Sensing Data," Agriculture, MDPI, vol. 14(4), pages 1-21, March.
- Silva, J.F. & Santos, J.L. & Ribeiro, P.F. & Marta-Pedroso, C. & Magalhães, M.R. & Moreira, F., 2024. "A farming systems approach to assess synergies and trade-offs among ecosystem services," Ecosystem Services, Elsevier, vol. 65(C).
- Devkota, Mina & Yigezu, Yigezu Atnafe, 2020. "Explaining yield and gross margin gaps for sustainable intensification of the wheat-based systems in a Mediterranean climate," Agricultural Systems, Elsevier, vol. 185(C).
- Puyu Feng & Bin Wang & De Li Liu & Hongtao Xing & Fei Ji & Ian Macadam & Hongyan Ruan & Qiang Yu, 2018. "Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia," Climatic Change, Springer, vol. 147(3), pages 555-569, April.
- Kouame, Anselme K.K. & Bindraban, Prem S. & Kissiedu, Isaac N. & Atakora, Williams K. & El Mejahed, Khalil, 2023. "Identifying drivers for variability in maize (Zea mays L.) yield in Ghana: A meta-regression approach," Agricultural Systems, Elsevier, vol. 209(C).
- Ahmed, Moiz Uddin & Hussain, Iqbal, 2022. "Prediction of Wheat Production Using Machine Learning Algorithms in northern areas of Pakistan," Telecommunications Policy, Elsevier, vol. 46(6).
- Chen, Kefei & O'Leary, Rebecca A. & Evans, Fiona H., 2019. "A simple and parsimonious generalised additive model for predicting wheat yield in a decision support tool," Agricultural Systems, Elsevier, vol. 173(C), pages 140-150.
- Shine, P. & Scully, T. & Upton, J. & Murphy, M.D., 2019. "Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine," Applied Energy, Elsevier, vol. 250(C), pages 1110-1119.
- Sakshi Balyan & Harsita Jangir & Shakti Nath Tripathi & Arpita Tripathi & Tripta Jhang & Praveen Pandey, 2024. "Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
- Li Fan & Shibo Fang & Jinlong Fan & Yan Wang & Linqing Zhan & Yongkun He, 2024. "Rice Yield Estimation Using Machine Learning and Feature Selection in Hilly and Mountainous Chongqing, China," Agriculture, MDPI, vol. 14(9), pages 1-18, September.
- Martin Kuradusenge & Eric Hitimana & Damien Hanyurwimfura & Placide Rukundo & Kambombo Mtonga & Angelique Mukasine & Claudette Uwitonze & Jackson Ngabonziza & Angelique Uwamahoro, 2023. "Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize," Agriculture, MDPI, vol. 13(1), pages 1-19, January.
- van der Velde, M. & Nisini, L., 2019. "Performance of the MARS-crop yield forecasting system for the European Union: Assessing accuracy, in-season, and year-to-year improvements from 1993 to 2015," Agricultural Systems, Elsevier, vol. 168(C), pages 203-212.
- Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2022. "Exploring the weather-yield nexus with artificial neural networks," Agricultural Systems, Elsevier, vol. 196(C).
- Paudel, Dilli & Boogaard, Hendrik & de Wit, Allard & Janssen, Sander & Osinga, Sjoukje & Pylianidis, Christos & Athanasiadis, Ioannis N., 2021. "Machine learning for large-scale crop yield forecasting," Agricultural Systems, Elsevier, vol. 187(C).
- Barlin O. Olivares & Andrés Vega & María A. Rueda Calderón & Edilberto Montenegro-Gracia & Miguel Araya-Almán & Edgloris Marys, 2022. "Prediction of Banana Production Using Epidemiological Parameters of Black Sigatoka: An Application with Random Forest," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
- Banda, Enid & Rafiei, Vahid & Kpodo, Josué & Nejadhashemi, A. Pouyan & Singh, Gurjeet & Das, Narendra N. & Kc, Rabin & Diallo, Amadiane, 2024. "Millet yield estimations in Senegal: Unveiling the power of regional water stress analysis and advanced predictive modeling," Agricultural Water Management, Elsevier, vol. 291(C).
- Keach Murakami & Seiji Shimoda & Yasuhiro Kominami & Manabu Nemoto & Satoshi Inoue, 2021. "Prediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-19, October.
- Xu Zhang & Guangsheng Chen & Lingxiao Cai & Hongbo Jiao & Jianwen Hua & Xifang Luo & Xinliang Wei, 2021. "Impact Assessments of Typhoon Lekima on Forest Damages in Subtropical China Using Machine Learning Methods and Landsat 8 OLI Imagery," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
- Sawadogo, Alidou & Dossou-Yovo, Elliott R. & Kouadio, Louis & Zwart, Sander J. & Traoré, Farid & Gündoğdu, Kemal S., 2023. "Assessing the biophysical factors affecting irrigation performance in rice cultivation using remote sensing derived information," Agricultural Water Management, Elsevier, vol. 278(C).
- Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2021. "Estimation of the Farm-Level Yield-Weather-Relation Using Machine Learning," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317075, German Association of Agricultural Economists (GEWISOLA).
- Sumin Park & Haemi Park & Jungho Im & Cheolhee Yoo & Jinyoung Rhee & Byungdoo Lee & ChunGeun Kwon, 2019. "Delineation of high resolution climate regions over the Korean Peninsula using machine learning approaches," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-23, October.
- Qingchuan Zhang & Zihan Li & Wei Dong & Siwei Wei & Yingjie Liu & Min Zuo, 2023. "A Model for Predicting and Grading the Quality of Grain Storage Processes Affected by Microorganisms under Different Environments," IJERPH, MDPI, vol. 20(5), pages 1-17, February.
- Mohsen Shahhosseini & Guiping Hu, 2020. "Machine Learning Models for Corn Yield Prediction A Survey of Literature," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 25(3), pages 80-83, July.
- Timsina, Jagadish & Dutta, Sudarshan & Devkota, Krishna Prasad & Chakraborty, Somsubhra & Neupane, Ram Krishna & Bishta, Sudarshan & Amgain, Lal Prasad & Singh, Vinod K. & Islam, Saiful & Majumdar, Ka, 2021. "Improved nutrient management in cereals using Nutrient Expert and machine learning tools: Productivity, profitability and nutrient use efficiency," Agricultural Systems, Elsevier, vol. 192(C).
- Britta L. Schumacher & Emily K. Burchfield & Brennan Bean & Matt A. Yost, 2023. "Leveraging Important Covariate Groups for Corn Yield Prediction," Agriculture, MDPI, vol. 13(3), pages 1-18, March.
- Indy Man Kit Ho & Anthony Weldon & Jason Tze Ho Yong & Candy Tze Tim Lam & Jaime Sampaio, 2023. "Using Machine Learning Algorithms to Pool Data from Meta-Analysis for the Prediction of Countermovement Jump Improvement," IJERPH, MDPI, vol. 20(10), pages 1-15, May.
- Indy Man Kit Ho & Kai Yuen Cheong & Anthony Weldon, 2021. "Predicting student satisfaction of emergency remote learning in higher education during COVID-19 using machine learning techniques," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-27, April.
- Héctor García-Martínez & Héctor Flores-Magdaleno & Roberto Ascencio-Hernández & Abdul Khalil-Gardezi & Leonardo Tijerina-Chávez & Oscar R. Mancilla-Villa & Mario A. Vázquez-Peña, 2020. "Corn Grain Yield Estimation from Vegetation Indices, Canopy Cover, Plant Density, and a Neural Network Using Multispectral and RGB Images Acquired with Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-24, July.
- Yiliang Kang & Yang Wang & Yanmin Fan & Hongqi Wu & Yue Zhang & Binbin Yuan & Huijun Li & Shuaishuai Wang & Zhilin Li, 2024. "Wheat Yield Estimation Based on Unmanned Aerial Vehicle Multispectral Images and Texture Feature Indices," Agriculture, MDPI, vol. 14(2), pages 1-15, January.