IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i1p225-d1037944.html
   My bibliography  Save this article

Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize

Author

Listed:
  • Martin Kuradusenge

    (School of ICT, College of Science and Technology, University of Rwanda, KN 67, Kigali P.O. Box 3900, Rwanda)

  • Eric Hitimana

    (School of ICT, College of Science and Technology, University of Rwanda, KN 67, Kigali P.O. Box 3900, Rwanda)

  • Damien Hanyurwimfura

    (School of ICT, College of Science and Technology, University of Rwanda, KN 67, Kigali P.O. Box 3900, Rwanda)

  • Placide Rukundo

    (Rwanda Agriculture and Animal Resources Development Board (RAB), Butare P.O. Box 138, Rwanda)

  • Kambombo Mtonga

    (Training & Education Development Consulting, Lilongwe P.O. Box 164, Malawi)

  • Angelique Mukasine

    (School of ICT, College of Science and Technology, University of Rwanda, KN 67, Kigali P.O. Box 3900, Rwanda)

  • Claudette Uwitonze

    (School of ICT, College of Science and Technology, University of Rwanda, KN 67, Kigali P.O. Box 3900, Rwanda)

  • Jackson Ngabonziza

    (School of ICT, College of Science and Technology, University of Rwanda, KN 67, Kigali P.O. Box 3900, Rwanda)

  • Angelique Uwamahoro

    (School of ICT, College of Science and Technology, University of Rwanda, KN 67, Kigali P.O. Box 3900, Rwanda)

Abstract

Although agriculture remains the dominant economic activity in many countries around the world, in recent years this sector has continued to be negatively impacted by climate change leading to food insecurities. This is so because extreme weather conditions induced by climate change are detrimental to most crops and affect the expected quantity of agricultural production. Although there is no way to fully mitigate these natural phenomena, it could be much better if there is information known earlier about the future so that farmers can plan accordingly. Early information sharing about expected crop production may support food insecurity risk reduction. In this regard, this work employs data mining techniques to predict future crop (i.e., Irish potatoes and Maize) harvests using weather and yields historical data for Musanze, a district in Rwanda. The study applies machine learning techniques to predict crop harvests based on weather data and communicate the information about production trends. Weather data and crop yields for Irish potatoes and maize were gathered from various sources. The collected data were analyzed through Random Forest, Polynomial Regression, and Support Vector Regressor. Rainfall and temperature were used as predictors. The models were trained and tested. The results indicate that Random Forest is the best model with root mean square error of 510.8 and 129.9 for potato and maize, respectively, whereas R 2 was 0.875 and 0.817 for the same crops datasets. The optimum weather conditions for the optimal crop yield were identified for each crop. The results suggests that Random Forest is recommended model for early crop yield prediction. The findings of this study will go a long way to enhance reliance on data for agriculture and climate change related decisions, especially in low-to-middle income countries such as Rwanda.

Suggested Citation

  • Martin Kuradusenge & Eric Hitimana & Damien Hanyurwimfura & Placide Rukundo & Kambombo Mtonga & Angelique Mukasine & Claudette Uwitonze & Jackson Ngabonziza & Angelique Uwamahoro, 2023. "Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize," Agriculture, MDPI, vol. 13(1), pages 1-19, January.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:1:p:225-:d:1037944
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/1/225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/1/225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eivind Uleberg & Inger Hanssen-Bauer & Bob Oort & Sigridur Dalmannsdottir, 2014. "Impact of climate change on agriculture in Northern Norway and potential strategies for adaptation," Climatic Change, Springer, vol. 122(1), pages 27-39, January.
    2. Jig Han Jeong & Jonathan P Resop & Nathaniel D Mueller & David H Fleisher & Kyungdahm Yun & Ethan E Butler & Dennis J Timlin & Kyo-Moon Shim & James S Gerber & Vangimalla R Reddy & Soo-Hyung Kim, 2016. "Random Forests for Global and Regional Crop Yield Predictions," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, J.F. & Santos, J.L. & Ribeiro, P.F. & Marta-Pedroso, C. & Magalhães, M.R. & Moreira, F., 2024. "A farming systems approach to assess synergies and trade-offs among ecosystem services," Ecosystem Services, Elsevier, vol. 65(C).
    2. Sanjeev Kumar & Ajay K. Singh, 2023. "Modeling the effects of climate change on agricultural productivity: evidence from Himachal Pradesh, India," Asia-Pacific Journal of Regional Science, Springer, vol. 7(2), pages 521-548, June.
    3. Ahmed, Moiz Uddin & Hussain, Iqbal, 2022. "Prediction of Wheat Production Using Machine Learning Algorithms in northern areas of Pakistan," Telecommunications Policy, Elsevier, vol. 46(6).
    4. Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2022. "Exploring the weather-yield nexus with artificial neural networks," Agricultural Systems, Elsevier, vol. 196(C).
    5. Indy Man Kit Ho & Anthony Weldon & Jason Tze Ho Yong & Candy Tze Tim Lam & Jaime Sampaio, 2023. "Using Machine Learning Algorithms to Pool Data from Meta-Analysis for the Prediction of Countermovement Jump Improvement," IJERPH, MDPI, vol. 20(10), pages 1-15, May.
    6. Helder Fraga & Teresa R. Freitas & Marco Moriondo & Daniel Molitor & João A. Santos, 2024. "Determining the Climatic Drivers for Wine Production in the Côa Region (Portugal) Using a Machine Learning Approach," Land, MDPI, vol. 13(6), pages 1-16, May.
    7. Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    8. Wiréhn, Lotten, 2018. "Nordic agriculture under climate change: A systematic review of challenges, opportunities and adaptation strategies for crop production," Land Use Policy, Elsevier, vol. 77(C), pages 63-74.
    9. Devkota, Mina & Yigezu, Yigezu Atnafe, 2020. "Explaining yield and gross margin gaps for sustainable intensification of the wheat-based systems in a Mediterranean climate," Agricultural Systems, Elsevier, vol. 185(C).
    10. Puyu Feng & Bin Wang & De Li Liu & Hongtao Xing & Fei Ji & Ian Macadam & Hongyan Ruan & Qiang Yu, 2018. "Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia," Climatic Change, Springer, vol. 147(3), pages 555-569, April.
    11. Shine, P. & Scully, T. & Upton, J. & Murphy, M.D., 2019. "Annual electricity consumption prediction and future expansion analysis on dairy farms using a support vector machine," Applied Energy, Elsevier, vol. 250(C), pages 1110-1119.
    12. Li Fan & Shibo Fang & Jinlong Fan & Yan Wang & Linqing Zhan & Yongkun He, 2024. "Rice Yield Estimation Using Machine Learning and Feature Selection in Hilly and Mountainous Chongqing, China," Agriculture, MDPI, vol. 14(9), pages 1-18, September.
    13. Barlin O. Olivares & Andrés Vega & María A. Rueda Calderón & Edilberto Montenegro-Gracia & Miguel Araya-Almán & Edgloris Marys, 2022. "Prediction of Banana Production Using Epidemiological Parameters of Black Sigatoka: An Application with Random Forest," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    14. Banda, Enid & Rafiei, Vahid & Kpodo, Josué & Nejadhashemi, A. Pouyan & Singh, Gurjeet & Das, Narendra N. & Kc, Rabin & Diallo, Amadiane, 2024. "Millet yield estimations in Senegal: Unveiling the power of regional water stress analysis and advanced predictive modeling," Agricultural Water Management, Elsevier, vol. 291(C).
    15. Keach Murakami & Seiji Shimoda & Yasuhiro Kominami & Manabu Nemoto & Satoshi Inoue, 2021. "Prediction of municipality-level winter wheat yield based on meteorological data using machine learning in Hokkaido, Japan," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-19, October.
    16. Xu Zhang & Guangsheng Chen & Lingxiao Cai & Hongbo Jiao & Jianwen Hua & Xifang Luo & Xinliang Wei, 2021. "Impact Assessments of Typhoon Lekima on Forest Damages in Subtropical China Using Machine Learning Methods and Landsat 8 OLI Imagery," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    17. Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2021. "Estimation of the Farm-Level Yield-Weather-Relation Using Machine Learning," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317075, German Association of Agricultural Economists (GEWISOLA).
    18. Timsina, Jagadish & Dutta, Sudarshan & Devkota, Krishna Prasad & Chakraborty, Somsubhra & Neupane, Ram Krishna & Bishta, Sudarshan & Amgain, Lal Prasad & Singh, Vinod K. & Islam, Saiful & Majumdar, Ka, 2021. "Improved nutrient management in cereals using Nutrient Expert and machine learning tools: Productivity, profitability and nutrient use efficiency," Agricultural Systems, Elsevier, vol. 192(C).
    19. Halland, Hilde & Bertella, Giovanna & Kvalvik, Ingrid, 2021. "Sustainable value: the perspective of horticultural producers in Arctic Norway," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 24(1).
    20. Kozioł-Kaczorek, Dorota, 2017. "The Plant Production in Norway," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 17(32, Part ), December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:1:p:225-:d:1037944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.