IDEAS home Printed from https://ideas.repec.org/p/ags/gewi21/317075.html
   My bibliography  Save this paper

Estimation of the Farm-Level Yield-Weather-Relation Using Machine Learning

Author

Listed:
  • Schmidt, Lorenz
  • Odening, Martin
  • Schlanstein, Johann
  • Ritter, Matthias

Abstract

Weather is a pivotal factor for crop production as it is highly volatile and can hardly be controlled by farm management practices. Since there is a tendency towards increased weather extremes in the future, understanding the weather-related yield factors becomes increasingly important not only for yield prediction, but also for the design of insurance products that mitigate financial losses for farmers. In this study, an artificial neural network is set up and calibrated to a rich set of farm-level wheat yield data in Germany covering the period from 2003 to 2018. A nonlinear regression model, which uses rainfall, temperature, and soil moisture as explanatory variables for yield deviations, serves as a benchmark. The empirical application reveals that the gain in estimation precision by using machine learning techniques compared with traditional estimation approaches is quite substantial and that the use of regionalized models and high-resolution weather data improve the performance of ANN.

Suggested Citation

  • Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2021. "Estimation of the Farm-Level Yield-Weather-Relation Using Machine Learning," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317075, German Association of Agricultural Economists (GEWISOLA).
  • Handle: RePEc:ags:gewi21:317075
    DOI: 10.22004/ag.econ.317075
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/317075/files/164-Odening_b.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.317075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wolfram Schlenker & Michael J. Roberts, 2006. "Nonlinear Effects of Weather on Corn Yields," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 28(3), pages 391-398.
    2. Willemijn Vroege & Janic Bucheli & Tobias Dalhaus & Martin Hirschi & Robert Finger, 2021. "Insuring crops from space: the potential of satellite-retrieved soil moisture to reduce farmers’ drought risk exposure," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(2), pages 266-314.
    3. Michael Popp & Margot Rudstrom & Patrick Manning, 2005. "Spatial Yield Risk Across Region, Crop and Aggregation Method," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 53(2‐3), pages 103-115, June.
    4. Joshua D. Woodard & Philip Garcia, 2008. "Basis risk and weather hedging effectiveness," Agricultural Finance Review, Emerald Group Publishing Limited, vol. 68(1), pages 99-117, May.
    5. Vedenov, Dmitry V. & Barnett, Barry J., 2004. "Efficiency of Weather Derivatives as Primary Crop Insurance Instruments," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 29(3), pages 1-17, December.
    6. Calum G. Turvey, 2001. "Weather Derivatives for Specific Event Risks in Agriculture," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 23(2), pages 333-351.
    7. Paudel, Dilli & Boogaard, Hendrik & de Wit, Allard & Janssen, Sander & Osinga, Sjoukje & Pylianidis, Christos & Athanasiadis, Ioannis N., 2021. "Machine learning for large-scale crop yield forecasting," Agricultural Systems, Elsevier, vol. 187(C).
    8. Klaus Nordhausen, 2009. "The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman," International Statistical Review, International Statistical Institute, vol. 77(3), pages 482-482, December.
    9. Jig Han Jeong & Jonathan P Resop & Nathaniel D Mueller & David H Fleisher & Kyungdahm Yun & Ethan E Butler & Dennis J Timlin & Kyo-Moon Shim & James S Gerber & Vangimalla R Reddy & Soo-Hyung Kim, 2016. "Random Forests for Global and Regional Crop Yield Predictions," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    10. Sarah Conradt & Robert Finger & Raushan Bokusheva, 2015. "Tailored to the extremes: Quantile regression for index-based insurance contract design," Agricultural Economics, International Association of Agricultural Economists, vol. 46(4), pages 537-547, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2022. "Exploring the weather-yield nexus with artificial neural networks," Agricultural Systems, Elsevier, vol. 196(C).
    2. Bucheli, Janic & Dalhaus, Tobias & Finger, Robert, 2022. "Temperature effects on crop yields in heat index insurance," Food Policy, Elsevier, vol. 107(C).
    3. Wienand Kölle & Andrea Martínez Salgueiro & Matthias Buchholz & Oliver Musshoff, 2021. "Can satellite‐based weather index insurance improve the hedging of yield risk of perennial non‐irrigated olive trees in Spain?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(1), pages 66-93, January.
    4. Shenan Wu & Barry K. Goodwin & Keith Coble, 2020. "Moral hazard and subsidized crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 131-142, January.
    5. Buchholz, Matthias & Musshoff, Oliver, 2014. "The role of weather derivatives and portfolio effects in agricultural water management," Agricultural Water Management, Elsevier, vol. 146(C), pages 34-44.
    6. Zhiwei Shen & Martin Odening, 2013. "Coping with systemic risk in index-based crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 44(1), pages 1-13, January.
    7. Kleiman, Rachel M. & Characklis, Gregory W. & Kern, Jordan D., 2022. "Managing weather- and market price-related financial risks in algal biofuel production," Renewable Energy, Elsevier, vol. 200(C), pages 111-124.
    8. Raucci, Gian Lucca & Silveira, Rodrigo Lanna F. & Capitani, Daniel H D, 2018. "Development Of Weather Derivatives: Evidence From Brazilian Soybean Market," 2018 Annual Meeting, August 5-7, Washington, D.C. 274105, Agricultural and Applied Economics Association.
    9. Vroege, Willemijn & Dalhaus, Tobias & Finger, Robert, 2019. "Index insurances for grasslands – A review for Europe and North-America," Agricultural Systems, Elsevier, vol. 168(C), pages 101-111.
    10. Andrea Martínez Salgueiro & Maria-Antonia Tarrazon-Rodon, 2021. "Weather derivatives to mitigate meteorological risks in tourism management: An empirical application to celebrations of Comunidad Valenciana (Spain)," Tourism Economics, , vol. 27(4), pages 591-613, June.
    11. Woodard, Joshua D. & Garcia, Philip, 2008. "Weather Derivatives, Spatial Aggregation, and Systemic Risk: Implications for Reinsurance Hedging," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 33(1), pages 1-18, April.
    12. Jensen, Nathaniel D. & Barrett, Christopher B. & Mude, Andrew G., 2014. "Basis Risk and the Welfare Gains from Index Insurance: Evidence from Northern Kenya," MPRA Paper 59153, University Library of Munich, Germany.
    13. Doms, Juliane, 2017. "Put, call or strangle? About the challenges in designing weather index insurances to hedge performance risk in agriculture," 57th Annual Conference, Weihenstephan, Germany, September 13-15, 2017 261990, German Association of Agricultural Economists (GEWISOLA).
    14. Mengmeng Qiang & Manhong Shen & Guanjun Xia, 2023. "The effectiveness of weather index insurance in managing mariculture production risk," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(2), pages 245-262, April.
    15. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    16. Alexis Berg & Philippe Quirion & Benjamin Sultan, 2009. "Weather-index drought insurance in Burkina-Faso: assessment of its potential interest to farmers," Post-Print hal-00520893, HAL.
    17. Turvey, Calum G. & Norton, Michael, 2008. "An Internet-Based Tool for Weather Risk Management," Agricultural and Resource Economics Review, Cambridge University Press, vol. 37(1), pages 63-78, April.
    18. Bokusheva, Raushan, 2010. "Measuring the dependence structure between yield and weather variables," MPRA Paper 22786, University Library of Munich, Germany.
    19. Monika Wieczorek-Kosmala, 2020. "Weather Risk Management in Energy Sector: The Polish Case," Energies, MDPI, vol. 13(4), pages 1-21, February.
    20. Dissemin, uploaded via & Berg, Alexis & Quirion, Philippe & Sultan, Benjamin, 2018. "Weather-index drought insurance in Burkina-Faso: assessment of its potential interest to farmers," OSF Preprints dsmqz, Center for Open Science.

    More about this item

    Keywords

    Production Economics; Research Methods / Statistical Methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:gewi21:317075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/gewisea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.