My bibliography
Save this item
Improved protein structure prediction using potentials from deep learning
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zachary C. Drake & Justin T. Seffernick & Steffen Lindert, 2022. "Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Tian Lan & Huan Wang & Qi An, 2024. "Enabling high throughput deep reinforcement learning with first principles to investigate catalytic reaction mechanisms," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Tao Ni & Qiuyao Jiang & Pei Cing Ng & Juan Shen & Hao Dou & Yanan Zhu & Julika Radecke & Gregory F. Dykes & Fang Huang & Lu-Ning Liu & Peijun Zhang, 2023. "Intrinsically disordered CsoS2 acts as a general molecular thread for α-carboxysome shell assembly," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Zhiye Guo & Jian Liu & Jeffrey Skolnick & Jianlin Cheng, 2022. "Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Naughtin, Claire & Hajkowicz, Stefan & Schleiger, Emma & Bratanova, Alexandra & Cameron, Alicia & Zamin, T & Dutta, A, 2022. "Our Future World: Global megatrends impacting the way we live over coming decades," MPRA Paper 113900, University Library of Munich, Germany.
- Lei Wang & Jiangguo Zhang & Dali Wang & Chen Song, 2022. "Membrane contact probability: An essential and predictive character for the structural and functional studies of membrane proteins," PLOS Computational Biology, Public Library of Science, vol. 18(3), pages 1-27, March.
- Qiufen Chen & Yuanzhao Guo & Jiuhong Jiang & Jing Qu & Li Zhang & Han Wang, 2023. "The Relative Distance Prediction of Transmembrane Protein Surface Residue Based on Improved Residual Networks," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
- Nicolas Renaud & Cunliang Geng & Sonja Georgievska & Francesco Ambrosetti & Lars Ridder & Dario F. Marzella & Manon F. Réau & Alexandre M. J. J. Bonvin & Li C. Xue, 2021. "DeepRank: a deep learning framework for data mining 3D protein-protein interfaces," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
- Noelia Ferruz & Steffen Schmidt & Birte Höcker, 2022. "ProtGPT2 is a deep unsupervised language model for protein design," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Krzysztof Rusek & Agnieszka Kleszcz & Albert Cabellos-Aparicio, 2022. "Bayesian inference of spatial and temporal relations in AI patents for EU countries," Papers 2201.07168, arXiv.org.
- Willow Coyote-Maestas & David Nedrud & Antonio Suma & Yungui He & Kenneth A. Matreyek & Douglas M. Fowler & Vincenzo Carnevale & Chad L. Myers & Daniel Schmidt, 2021. "Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
- Benoit Stijlemans & Patrick Baetselier & Inge Molle & Laurence Lecordier & Erika Hendrickx & Ema Romão & Cécile Vincke & Wendy Baetens & Steve Schoonooghe & Gholamreza Hassanzadeh-Ghassabeh & Hannelie, 2024. "Q586B2 is a crucial virulence factor during the early stages of Trypanosoma brucei infection that is conserved amongst trypanosomatids," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
- Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Luis S. Piloto & Ari Weinstein & Peter Battaglia & Matthew Botvinick, 2022. "Intuitive physics learning in a deep-learning model inspired by developmental psychology," Nature Human Behaviour, Nature, vol. 6(9), pages 1257-1267, September.
- Niklas W. A. Gebauer & Michael Gastegger & Stefaan S. P. Hessmann & Klaus-Robert Müller & Kristof T. Schütt, 2022. "Inverse design of 3d molecular structures with conditional generative neural networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Januschowski, Tim & Wang, Yuyang & Torkkola, Kari & Erkkilä, Timo & Hasson, Hilaf & Gasthaus, Jan, 2022. "Forecasting with trees," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1473-1481.
- Chengwei Zeng & Yiren Jian & Soroush Vosoughi & Chen Zeng & Yunjie Zhao, 2023. "Evaluating native-like structures of RNA-protein complexes through the deep learning method," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Lisa Van den Broeck & Dinesh Kiran Bhosale & Kuncheng Song & Cássio Flavio Fonseca de Lima & Michael Ashley & Tingting Zhu & Shanshuo Zhu & Brigitte Van De Cotte & Pia Neyt & Anna C. Ortiz & Tiffany R, 2023. "Functional annotation of proteins for signaling network inference in non-model species," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Jong Woo Bae & Sangtae Kim & V. Narry Kim & Jong-Seo Kim, 2021. "Photoactivatable ribonucleosides mark base-specific RNA-binding sites," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Erika Erickson & Japheth E. Gado & Luisana Avilán & Felicia Bratti & Richard K. Brizendine & Paul A. Cox & Raj Gill & Rosie Graham & Dong-Jin Kim & Gerhard König & William E. Michener & Saroj Poudel &, 2022. "Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Chao Li & Qiming Yang & Bowen Pang & Tiance Chen & Qian Cheng & Jiaomin Liu, 2021. "A Mixed Strategy of Higher-Order Structure for Link Prediction Problem on Bipartite Graphs," Mathematics, MDPI, vol. 9(24), pages 1-13, December.
- Agnese I. Curatolo & Ofer Kimchi & Carl P. Goodrich & Ryan K. Krueger & Michael P. Brenner, 2023. "A computational toolbox for the assembly yield of complex and heterogeneous structures," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Emilie Montembault & Irène Deduyer & Marie-Charlotte Claverie & Lou Bouit & Nicolas J. Tourasse & Denis Dupuy & Derek McCusker & Anne Royou, 2023. "Two RhoGEF isoforms with distinct localisation control furrow position during asymmetric cell division," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Simone Vannuccini & Ekaterina Prytkova, 2021. "Artificial Intelligence’s New Clothes? From General Purpose Technology to Large Technical System," SPRU Working Paper Series 2021-02, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Liu, Bokai & Wang, Yizheng & Rabczuk, Timon & Olofsson, Thomas & Lu, Weizhuo, 2024. "Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks," Renewable Energy, Elsevier, vol. 220(C).
- Aaron Gupta & Kevin S. Kao & Rachel Yamin & Deena A. Oren & Yehuda Goldgur & Jonathan Du & Pete Lollar & Eric J. Sundberg & Jeffrey V. Ravetch, 2023. "Mechanism of glycoform specificity and in vivo protection by an anti-afucosylated IgG nanobody," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Md Tauhidul Islam & Zixia Zhou & Hongyi Ren & Masoud Badiei Khuzani & Daniel Kapp & James Zou & Lu Tian & Joseph C. Liao & Lei Xing, 2023. "Revealing hidden patterns in deep neural network feature space continuum via manifold learning," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
- Cong Zhang & Di-Fei Zhou & Meng-Ying Wang & Ya-Zhen Song & Chong Zhang & Ming-Ming Zhang & Jing Sun & Lu Yao & Xu-Hua Mo & Zeng-Xin Ma & Xiao-Jie Yuan & Yi Shao & Hao-Ran Wang & Si-Han Dong & Kai Bao , 2024. "Phosphoribosylpyrophosphate synthetase as a metabolic valve advances Methylobacterium/Methylorubrum phyllosphere colonization and plant growth," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Lu Liu & Benjamin F. Jones & Brian Uzzi & Dashun Wang, 2023. "Data, measurement and empirical methods in the science of science," Nature Human Behaviour, Nature, vol. 7(7), pages 1046-1058, July.
- Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
- Charlotte Loh & Thomas Christensen & Rumen Dangovski & Samuel Kim & Marin Soljačić, 2022. "Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Krzysztof Rusek & Agnieszka Kleszcz & Albert Cabellos-Aparicio, 2023. "Bayesian inference of spatial and temporal relations in AI patents for EU countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3313-3335, June.