IDEAS home Printed from https://ideas.repec.org/r/nat/nature/v452y2008i7189d10.1038_nature06851.html
   My bibliography  Save this item

Why fishing magnifies fluctuations in fish abundance

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Worden, Lee & Botsford, Louis W. & Hastings, Alan & Holland, Matthew D., 2010. "Frequency responses of age-structured populations: Pacific salmon as an example," Theoretical Population Biology, Elsevier, vol. 78(4), pages 239-249.
  2. Holland, Daniel S. & Herrera, Guillermo E., 2012. "The impact of age structure, uncertainty, and asymmetric spatial dynamics on regulatory performance in a fishery metapopulation," Ecological Economics, Elsevier, vol. 77(C), pages 207-218.
  3. do Val, J.B.R. & Guillotreau, P. & Vallée, T., 2019. "Fishery management under poorly known dynamics," European Journal of Operational Research, Elsevier, vol. 279(1), pages 242-257.
  4. Dirk Lauinger & Romain G. Billy & Felipe Vásquez & Daniel B. Müller, 2021. "A general framework for stock dynamics of populations and built and natural environments," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1136-1146, October.
  5. Hugo C. Mendes & Alberto Murta & R. Vilela Mendes, 2015. "Long Range Dependence And The Dynamics Of Exploited Fish Populations," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(07n08), pages 1-14, November.
  6. John M Halley & Kyle S Van Houtan & Nate Mantua, 2018. "How survival curves affect populations’ vulnerability to climate change," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.
  7. Lemos, Ricardo T., 2016. "An alternative stock-recruitment function for age-structured models," Ecological Modelling, Elsevier, vol. 341(C), pages 14-26.
  8. Vélez-Espino, Luis A. & Koops, Marten A., 2012. "Capacity for increase, compensatory reserves, and catastrophes as determinants of minimum viable population in freshwater fishes," Ecological Modelling, Elsevier, vol. 247(C), pages 319-326.
  9. Andreas Sundelöf & Valerio Bartolino & Mats Ulmestrand & Massimiliano Cardinale, 2013. "Multi-Annual Fluctuations in Reconstructed Historical Time-Series of a European Lobster (Homarus gammarus) Population Disappear at Increased Exploitation Levels," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
  10. Frisman, E.Y. & Neverova, G.P. & Revutskaya, O.L., 2011. "Complex dynamics of the population with a simple age structure," Ecological Modelling, Elsevier, vol. 222(12), pages 1943-1950.
  11. Jie Ning & Matthew J. Sobel, 2019. "Easy Affine Markov Decision Processes," Operations Research, INFORMS, vol. 67(6), pages 1719-1737, November.
  12. Tahvonen, Olli, 2009. "Economics of harvesting age-structured fish populations," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 281-299, November.
  13. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
  14. Engen, Steinar, 2017. "Spatial synchrony and harvesting in fluctuating populations:Relaxing the small noise assumption," Theoretical Population Biology, Elsevier, vol. 116(C), pages 18-26.
  15. Azqueta-Gavaldón, Andrés, 2020. "Causal inference between cryptocurrency narratives and prices: Evidence from a complex dynamic ecosystem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
  16. Frossard, Victor & Rimet, Frédéric & Perga, Marie-Elodie, 2018. "Causal networks reveal the dominance of bottom-up interactions in large, deep lakes," Ecological Modelling, Elsevier, vol. 368(C), pages 136-146.
  17. Thanassekos, Stéphane & Scheld, Andrew M., 2020. "Simulating the effects of environmental and market variability on fishing industry structure," Ecological Economics, Elsevier, vol. 174(C).
  18. Maroto, Jose M. & Moran, Manuel, 2014. "Detecting the presence of depensation in collapsed fisheries: The case of the Northern cod stock," Ecological Economics, Elsevier, vol. 97(C), pages 101-109.
  19. Kokkonen, Eevi & Kuisma, Mikael & Hyvärinen, Pekka & Vainikka, Anssi & Vuorio, Kristiina & Perälä, Tommi & Härkönen, Laura S. & Estlander, Satu & Kuparinen, Anna, 2024. "Effects of top predator re-establishment and fishing on a simulated food web: Allometric Trophic Network model for Lake Oulujärvi," Ecological Modelling, Elsevier, vol. 492(C).
  20. Florian Diekert & Dag Hjermann & Eric Nævdal & Nils Stenseth, 2010. "Spare the Young Fish: Optimal Harvesting Policies for North-East Arctic Cod," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 455-475, December.
  21. Ricouard, Antoine & Lehuta, Sigrid & Mahévas, Stéphanie, 2023. "Are maximum yields sustainable? Effect of intra-annual time-scales on MSY, stability and resilience," Ecological Modelling, Elsevier, vol. 479(C).
  22. Florian Diekert, 2012. "Growth Overfishing: The Race to Fish Extends to the Dimension of Size," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(4), pages 549-572, August.
  23. Nye, Janet A. & Gamble, Robert J. & Link, Jason S., 2013. "The relative impact of warming and removing top predators on the Northeast US large marine biotic community," Ecological Modelling, Elsevier, vol. 264(C), pages 157-168.
  24. Dercole, Fabio & Prieu, Charlotte & Rinaldi, Sergio, 2010. "Technological change and fisheries sustainability: The point of view of Adaptive Dynamics," Ecological Modelling, Elsevier, vol. 221(3), pages 379-387.
  25. Barros, Mónica E. & Arriagada, Ana & Arancibia, Hugo & Neira, Sergio, 2024. "Using a time-dynamic food web model to compare predation and fishing mortality in Pleuroncodes monodon (Galatheidae: Crustaceae) and other benthic and demersal resource species off central Chile," Ecological Modelling, Elsevier, vol. 487(C).
  26. Ezard, Thomas H.G. & Coulson, Tim, 2010. "How sensitive are elasticities of long-run stochastic growth to how environmental variability is modelled?," Ecological Modelling, Elsevier, vol. 221(2), pages 191-200.
  27. Wikström, Anders & Ripa, Jörgen & Jonzén, Niclas, 2012. "The role of harvesting in age-structured populations: Disentangling dynamic and age truncation effects," Theoretical Population Biology, Elsevier, vol. 82(4), pages 348-354.
  28. Ni, Yuanming, 2019. "Optimization of age-structured bioeconomic model: recruitment, weight gain and environmental effects," Discussion Papers 2019/4, Norwegian School of Economics, Department of Business and Management Science.
  29. Isomaa, Marleena & Kaitala, Veijo & Laakso, Jouni, 2014. "Determining the impact of initial age structure on the recovery of a healthy over-harvested population," Ecological Modelling, Elsevier, vol. 286(C), pages 45-52.
  30. Jana, Debaldev & Agrawal, Rashmi & Upadhyay, Ranjit Kumar & Samanta, G.P., 2016. "Ecological dynamics of age selective harvesting of fish population: Maximum sustainable yield and its control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 111-122.
  31. Isomaa, Marleena & Kaitala, Veijo & Laakso, Jouni, 2013. "Baltic cod (Gadus morhua callarias) recovery potential under different environment and fishery scenarios," Ecological Modelling, Elsevier, vol. 266(C), pages 118-125.
  32. Rau, Anna-Lena & von Wehrden, Henrik & Abson, David J., 2018. "Temporal Dynamics of Ecosystem Services," Ecological Economics, Elsevier, vol. 151(C), pages 122-130.
  33. Charles A Gray, 2016. "Effects of Fishing and Fishing Closures on Beach Clams: Experimental Evaluation across Commercially Fished and Non-Fished Beaches before and during Harvesting," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-17, January.
  34. Williams, Meryl J., 2010. "Food from the Water: How the Fish Production Revolution Affects Aquatic Biodiversity and Food Security," 2010: Biodiversity and World Food Security: Nourishing the Planet and Its People, 30 August-1 September 2010 125247, Crawford Fund.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.