IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v93y2016icp111-122.html
   My bibliography  Save this article

Ecological dynamics of age selective harvesting of fish population: Maximum sustainable yield and its control strategy

Author

Listed:
  • Jana, Debaldev
  • Agrawal, Rashmi
  • Upadhyay, Ranjit Kumar
  • Samanta, G.P.

Abstract

Life history of ecological resource management and empirical studies are increasingly documenting the impact of selective harvesting process on the evolutionary stable strategy of both aquatic and terrestrial ecosystems. In the present study, the interaction between population and their independent and combined selective harvesting are framed by a multi-delayed prey-predator system. Depending upon the age selection strategy, system experiences stable coexistence to oscillatory mode and vice versa via Hopf-bifurcation. Economic evolution of the system which is mainly featured by maximum sustainable yield (MSY), bionomic equilibrium and optimal harvesting vary largely with the commensurate age selections of both population because equilibrium population abundance becomes age-selection dependent. Our study indicates that balance between harvesting delays and harvesting intensities should be maintained for better ecosystem management. Numerical examples support the analytical findings.

Suggested Citation

  • Jana, Debaldev & Agrawal, Rashmi & Upadhyay, Ranjit Kumar & Samanta, G.P., 2016. "Ecological dynamics of age selective harvesting of fish population: Maximum sustainable yield and its control strategy," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 111-122.
  • Handle: RePEc:eee:chsofr:v:93:y:2016:i:c:p:111-122
    DOI: 10.1016/j.chaos.2016.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916302806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jana, Debaldev & Pathak, Rachana & Agarwal, Manju, 2016. "On the stability and Hopf bifurcation of a prey-generalist predator system with independent age-selective harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 252-273.
    2. Chungsoo Kim, 1983. "Optimal management of multi-species north sea fishery resources," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 119(1), pages 138-151, March.
    3. Christian N. K. Anderson & Chih-hao Hsieh & Stuart A. Sandin & Roger Hewitt & Anne Hollowed & John Beddington & Robert M. May & George Sugihara, 2008. "Why fishing magnifies fluctuations in fish abundance," Nature, Nature, vol. 452(7189), pages 835-839, April.
    4. Henrik Svedäng & Sara Hornborg, 2014. "Selective fishing induces density-dependent growth," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
    5. Florian Diekert & Dag Hjermann & Eric Nævdal & Nils Stenseth, 2010. "Spare the Young Fish: Optimal Harvesting Policies for North-East Arctic Cod," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 455-475, December.
    6. Serguei Netessine & Robert Shumsky, 2002. "Introduction to the Theory and Practice of Yield Management," INFORMS Transactions on Education, INFORMS, vol. 3(1), pages 34-44, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Parthasakha & Das, Samhita & Upadhyay, Ranjit Kumar & Das, Pritha, 2020. "Optimal treatment strategies for delayed cancer-immune system with multiple therapeutic approach," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Datta, Jyotiska & Jana, Debaldev & Upadhyay, Ranjit Kumar, 2019. "Bifurcation and bio-economic analysis of a prey-generalist predator model with Holling type IV functional response and nonlinear age-selective prey harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 229-235.
    3. Pal, D. & Samanta, G.P. & Mahapatra, G.S., 2017. "Selective harvesting of two competing fish species in the presence of toxicity with time delay," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 74-93.
    4. N. S. N. V. K. Vyshnavi Devi & Debaldev Jana & M. Lakshmanan, 2020. "Interplay Between Reproduction and Age Selective Harvesting Delays of a Single Population Non-Autonomous System," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(4), pages 1857-1891, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Datta, Jyotiska & Jana, Debaldev & Upadhyay, Ranjit Kumar, 2019. "Bifurcation and bio-economic analysis of a prey-generalist predator model with Holling type IV functional response and nonlinear age-selective prey harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 229-235.
    2. Florian Diekert, 2012. "Growth Overfishing: The Race to Fish Extends to the Dimension of Size," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(4), pages 549-572, August.
    3. Isomaa, Marleena & Kaitala, Veijo & Laakso, Jouni, 2013. "Baltic cod (Gadus morhua callarias) recovery potential under different environment and fishery scenarios," Ecological Modelling, Elsevier, vol. 266(C), pages 118-125.
    4. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    5. Nye, Janet A. & Gamble, Robert J. & Link, Jason S., 2013. "The relative impact of warming and removing top predators on the Northeast US large marine biotic community," Ecological Modelling, Elsevier, vol. 264(C), pages 157-168.
    6. David Kopcso & Dessislava Pachamanova, 2018. "Case Article—Business Value in Integrating Predictive and Prescriptive Analytics Models," INFORMS Transactions on Education, INFORMS, vol. 19(1), pages 36-42, September.
    7. Rau, Anna-Lena & von Wehrden, Henrik & Abson, David J., 2018. "Temporal Dynamics of Ecosystem Services," Ecological Economics, Elsevier, vol. 151(C), pages 122-130.
    8. José-María Da Rocha & María-Jose Gutiérrez & Luis Antelo, 2013. "Selectivity, Pulse Fishing and Endogenous Lifespan in Beverton-Holt Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 139-154, January.
    9. Naevdal, Eric & Olaussen, Jon Olaf & Skonhoft, Anders, 2012. "A bioeconomic model of trophy hunting," Ecological Economics, Elsevier, vol. 73(C), pages 194-205.
    10. José Da Rocha & María Gutiérrez, 2012. "Endogenous Fishery Management in a Stochastic Model: Why Do Fishery Agencies Use TACs Along with Fishing Periods?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(1), pages 25-59, September.
    11. Li, Mengmeng & Mizuno, Shinji, 2022. "Comparison of dynamic and static pricing strategies in a dual-channel supply chain with inventory control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    12. Luttmann, Alexander, 2019. "Evidence of directional price discrimination in the U.S. airline industry," International Journal of Industrial Organization, Elsevier, vol. 62(C), pages 291-329.
    13. David Kopcso & Dessislava Pachamanova, 2018. "Case Article—Managing Staffing Inefficiencies Using Analytics (B): Business Value in Predictive and Prescriptive Analytics Models," INFORMS Transactions on Education, INFORMS, vol. 19(1), pages 43-47, September.
    14. Williams, Meryl J., 2010. "Food from the Water: How the Fish Production Revolution Affects Aquatic Biodiversity and Food Security," 2010: Biodiversity and World Food Security: Nourishing the Planet and Its People, 30 August-1 September 2010 125247, Crawford Fund.
    15. Andreas Sundelöf & Valerio Bartolino & Mats Ulmestrand & Massimiliano Cardinale, 2013. "Multi-Annual Fluctuations in Reconstructed Historical Time-Series of a European Lobster (Homarus gammarus) Population Disappear at Increased Exploitation Levels," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    16. Tahvonen, Olli & Quaas, Martin F. & Voss, Rüdiger, 2018. "Harvesting selectivity and stochastic recruitment in economic models of age-structured fisheries," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 659-676.
    17. Yang, Ruizhi & Ma, Jian, 2018. "Analysis of a diffusive predator-prey system with anti-predator behaviour and maturation delay," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 128-139.
    18. Kanik, Zafer & Kucuksenel, Serkan, 2016. "Quota implementation of the maximum sustainable yield for age-structured fisheries," MPRA Paper 70535, University Library of Munich, Germany.
    19. Thanassekos, Stéphane & Scheld, Andrew M., 2020. "Simulating the effects of environmental and market variability on fishing industry structure," Ecological Economics, Elsevier, vol. 174(C).
    20. Kokkonen, Eevi & Kuisma, Mikael & Hyvärinen, Pekka & Vainikka, Anssi & Vuorio, Kristiina & Perälä, Tommi & Härkönen, Laura S. & Estlander, Satu & Kuparinen, Anna, 2024. "Effects of top predator re-establishment and fishing on a simulated food web: Allometric Trophic Network model for Lake Oulujärvi," Ecological Modelling, Elsevier, vol. 492(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:93:y:2016:i:c:p:111-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.