IDEAS home Printed from https://ideas.repec.org/r/kap/transp/v42y2015i4p597-623.html
   My bibliography  Save this item

Discovering urban activity patterns in cell phone data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chen Xie & Dexin Yu & Xiaoyu Zheng & Zhuorui Wang & Zhongtai Jiang, 2021. "Revealing spatiotemporal travel demand and community structure characteristics with taxi trip data: A case study of New York City," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-21, November.
  2. Fangye Du & Jiaoe Wang & Liang Mao & Jian Kang, 2024. "Daily rhythm of urban space usage: insights from the nexus of urban functions and human mobility," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
  3. Mohammadi, Neda & Taylor, John E., 2017. "Urban infrastructure-mobility energy flux," Energy, Elsevier, vol. 140(P1), pages 716-728.
  4. Mohammadi, Neda & Taylor, John E., 2017. "Urban energy flux: Spatiotemporal fluctuations of building energy consumption and human mobility-driven prediction," Applied Energy, Elsevier, vol. 195(C), pages 810-818.
  5. Chen, Wendong & Chen, Xuewu & Cheng, Long & Liu, Xize & Chen, Jingxu, 2022. "Delineating borders of urban activity zones with free-floating bike sharing spatial interaction network," Journal of Transport Geography, Elsevier, vol. 104(C).
  6. Hao Wu & Lingbo Liu & Yang Yu & Zhenghong Peng, 2018. "Evaluation and Planning of Urban Green Space Distribution Based on Mobile Phone Data and Two-Step Floating Catchment Area Method," Sustainability, MDPI, vol. 10(1), pages 1-11, January.
  7. Mariem Fekih & Tom Bellemans & Zbigniew Smoreda & Patrick Bonnel & Angelo Furno & Stéphane Galland, 2021. "A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France)," Transportation, Springer, vol. 48(4), pages 1671-1702, August.
  8. Shaohua Wang & Xianxiong Liu & Haiyin Wang & Qingwu Hu, 2018. "A Case Study on Spatio-Temporal Data Mining of Urban Social Management Events Based on Ontology Semantic Analysis," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
  9. Meead Saberi & Taha H. Rashidi & Milad Ghasri & Kenneth Ewe, 2018. "A Complex Network Methodology for Travel Demand Model Evaluation and Validation," Networks and Spatial Economics, Springer, vol. 18(4), pages 1051-1073, December.
  10. Lijun Sun & Xinyu Chen & Zhaocheng He & Luis F. Miranda-Moreno, 2023. "Routine Pattern Discovery and Anomaly Detection in Individual Travel Behavior," Networks and Spatial Economics, Springer, vol. 23(2), pages 407-428, June.
  11. Yuan Yuan & Hongbo Li & Xiaolin Zhang & Xiaoliang Hu & Yahua Wang, 2019. "Emerging Location-Based Service Data on Perceiving and Measuring Multifunctionality of Rural Space: A Study of Suzhou, China," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
  12. Qingru Zou & Xiangming Yao & Peng Zhao & Heng Wei & Hui Ren, 2018. "Detecting home location and trip purposes for cardholders by mining smart card transaction data in Beijing subway," Transportation, Springer, vol. 45(3), pages 919-944, May.
  13. Mengyao Ren & Yaoyu Lin & Meihan Jin & Zhongyuan Duan & Yongxi Gong & Yu Liu, 2020. "Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records," Transportation, Springer, vol. 47(4), pages 1607-1629, August.
  14. Pozdnukhov, Alexey, 2016. "Demand Forecasting and Activity-based Mobility Modeling from Cell Phone Data," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt4hc9r218, Institute of Transportation Studies, UC Berkeley.
  15. Jianmin Jia & Chenhui Liu & Tao Wan, 2019. "Planning of the Charging Station for Electric Vehicles Utilizing Cellular Signaling Data," Sustainability, MDPI, vol. 11(3), pages 1-16, January.
  16. Meead Saberi & Hani S. Mahmassani & Dirk Brockmann & Amir Hosseini, 2017. "A complex network perspective for characterizing urban travel demand patterns: graph theoretical analysis of large-scale origin–destination demand networks," Transportation, Springer, vol. 44(6), pages 1383-1402, November.
  17. Sadahiro, Yukio, 2021. "A method for analyzing the daily variation in the spatial pattern of market area," Journal of Retailing and Consumer Services, Elsevier, vol. 58(C).
  18. Cuauhtemoc Anda & Alexander Erath & Pieter Jacobus Fourie, 2017. "Transport modelling in the age of big data," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 21(0), pages 19-42, August.
  19. Longxu Yan & De Wang & Shangwu Zhang & Dongcan Xie, 2019. "Evaluating the multi-scale patterns of jobs-residence balance and commuting time–cost using cellular signaling data: a case study in Shanghai," Transportation, Springer, vol. 46(3), pages 777-792, June.
  20. Liu, Lun & Gao, Xuesong & Zhuang, Jiexin & Wu, Wen & Yang, Bo & Cheng, Wei & Xiao, Pengfei & Yao, Xingzhu & Deng, Ouping, 2020. "Evaluating the lifestyle impact of China’s rural housing land consolidation with locational big data: A study of Chengdu," Land Use Policy, Elsevier, vol. 96(C).
  21. Milne, Dave & Watling, David, 2019. "Big data and understanding change in the context of planning transport systems," Journal of Transport Geography, Elsevier, vol. 76(C), pages 235-244.
  22. Cheng Shi & Yujia Zhai & Dongying Li, 2023. "Urban tourists’ spatial distribution and subgroup identification in a metropolis --the examination applying mobile signaling data and latent profile analysis," Information Technology & Tourism, Springer, vol. 25(3), pages 453-476, September.
  23. Rui Ding & Norsidah Ujang & Hussain Bin Hamid & Mohd Shahrudin Abd Manan & Rong Li & Safwan Subhi Mousa Albadareen & Ashkan Nochian & Jianjun Wu, 2019. "Application of Complex Networks Theory in Urban Traffic Network Researches," Networks and Spatial Economics, Springer, vol. 19(4), pages 1281-1317, December.
  24. Gang Zhong & Tingting Yin & Jian Zhang & Shanglu He & Bin Ran, 2019. "Characteristics analysis for travel behavior of transportation hub passengers using mobile phone data," Transportation, Springer, vol. 46(5), pages 1713-1736, October.
  25. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
  26. Sheng Wei & Lei Wang, 2020. "Examining the population flow network in China and its implications for epidemic control based on Baidu migration data," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-10, December.
  27. Jing Wu & Changlong Ling & Xinzhuo Li, 2019. "Study on the Accessibility and Recreational Development Potential of Lakeside Areas Based on Bike-Sharing Big Data Taking Wuhan City as an Example," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
  28. Zhao, Shuangming & Zhao, Pengxiang & Cui, Yunfan, 2017. "A network centrality measure framework for analyzing urban traffic flow: A case study of Wuhan, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 143-157.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.