IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p160-d301474.html
   My bibliography  Save this article

Study on the Accessibility and Recreational Development Potential of Lakeside Areas Based on Bike-Sharing Big Data Taking Wuhan City as an Example

Author

Listed:
  • Jing Wu

    (School of Urban Design, Wuhan University, Wuhan 430072, China)

  • Changlong Ling

    (School of Urban Design, Wuhan University, Wuhan 430072, China)

  • Xinzhuo Li

    (School of Urban Design, Wuhan University, Wuhan 430072, China)

Abstract

Accessibility is an important factor in measuring the recreational development potential of Wuhan lakeside areas where people like bike-sharing services for leisure. By using bike-sharing big data, this paper visualizes the spatiotemporal distribution characteristics and depicts the free flows of OD (Original Points and Destination Points) points of the bike-sharing activities taking place within 4 km of 21 lakes in the Wuhan Third Ring Road on an important holiday. Based on these distribution laws, statistics and spatial measurement are used to measure and compare the theoretical accessibility and actual accessibility of these lakeside areas at different grid scales in order to estimate the recreational development potential and explore the causes and possible suggestions behind the recreational potential. Results show that Ziyang Lake, Shai Lake, and South Lake have great recreational potential in improving their accessibility, whereas the Hankou lake dense area has a saturated recreational development potential due to its high accessibility characteristics. The differences in the water environment, surrounding road traffic conditions, and construction situations in these lakes influence their accessibility. Some differences are also observed between the actual and theoretical accessibility of most of these lakes, and there is a long way to go for real improvement of their recreational development potential. To better exploit the recreational development potential, improving the accessibility of these lakes remains an important issue that needs to be addressed as soon as possible.

Suggested Citation

  • Jing Wu & Changlong Ling & Xinzhuo Li, 2019. "Study on the Accessibility and Recreational Development Potential of Lakeside Areas Based on Bike-Sharing Big Data Taking Wuhan City as an Example," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:160-:d:301474
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/160/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/160/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Keyvanfar & Arezou Shafaghat & Sapura Mohamad & Mu’azu Mohammed Abdullahi & Hamidah Ahmad & Nurul Hidayah Mohd Derus & Majid Khorami, 2018. "A Sustainable Historic Waterfront Revitalization Decision Support Tool for Attracting Tourists," Sustainability, MDPI, vol. 10(2), pages 1-23, January.
    2. Stella Kostopoulou, 2013. "On the Revitalized Waterfront: Creative Milieu for Creative Tourism," Sustainability, MDPI, vol. 5(11), pages 1-16, October.
    3. Peter Widhalm & Yingxiang Yang & Michael Ulm & Shounak Athavale & Marta González, 2015. "Discovering urban activity patterns in cell phone data," Transportation, Springer, vol. 42(4), pages 597-623, July.
    4. Jing Wu & Jingwen Li & Yue Ma, 2019. "Exploring the Relationship between Potential and Actual of Urban Waterfront Spaces in Wuhan Based on Social Networks," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    5. Jinwon Kim & Brijesh Thapa & Seongsoo Jang & Eunjung Yang, 2018. "Seasonal Spatial Activity Patterns of Visitors with a Mobile Exercise Application at Seoraksan National Park, South Korea," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    6. Yuan Li & Zhenjun Zhu & Xiucheng Guo, 2019. "Operating Characteristics of Dockless Bike-Sharing Systems near Metro Stations: Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    7. Tang, Jinjun & Liu, Fang & Wang, Yinhai & Wang, Hua, 2015. "Uncovering urban human mobility from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 140-153.
    8. D. J. Weiss & A. Nelson & H. S. Gibson & W. Temperley & S. Peedell & A. Lieber & M. Hancher & E. Poyart & S. Belchior & N. Fullman & B. Mappin & U. Dalrymple & J. Rozier & T. C. D. Lucas & R. E. Howes, 2018. "A global map of travel time to cities to assess inequalities in accessibility in 2015," Nature, Nature, vol. 553(7688), pages 333-336, January.
    9. Tang, Jinjun & Zhang, Shen & Chen, Xinqiang & Liu, Fang & Zou, Yajie, 2018. "Taxi trips distribution modeling based on Entropy-Maximizing theory: A case study in Harbin city—China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 430-443.
    10. Yu Liu & Chaogui Kang & Song Gao & Yu Xiao & Yuan Tian, 2012. "Understanding intra-urban trip patterns from taxi trajectory data," Journal of Geographical Systems, Springer, vol. 14(4), pages 463-483, October.
    11. Chuntao Wu & Maozhu Liao & Chengliang Liu, 2019. "Acquiring and Geo-Visualizing Aviation Carbon Footprint among Urban Agglomerations in China," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    12. Shaheen, Susan & Martin, Elliot, 2015. "Unraveling the Modal Impacts of Bikesharing," University of California Transportation Center, Working Papers qt3cd802js, University of California Transportation Center.
    13. Wei Qi & Guy J Abel & Raya Muttarak & Shenghe Liu, 2017. "Circular visualization of China’s internal migration flows 2010–2015," Environment and Planning A, , vol. 49(11), pages 2432-2436, November.
    14. Jiaoe Wang & Jie Huang & Michael Dunford, 2019. "Rethinking the Utility of Public Bicycles: The Development and Challenges of Station-Less Bike Sharing in China," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    15. Cui, JianXun & Liu, Feng & Janssens, Davy & An, Shi & Wets, Geert & Cools, Mario, 2016. "Detecting urban road network accessibility problems using taxi GPS data," Journal of Transport Geography, Elsevier, vol. 51(C), pages 147-157.
    16. Emanuele Leporelli & Giovanni Santi, 2019. "From Psychology of Sustainability to Sustainability of Urban Spaces: Promoting a Primary Prevention Approach for Well-Being in the Healthy City Designing. A Waterfront Case Study in Livorno," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Dawen & Jiang, Shunying & Yang, Nan & Hu, Yang & Li, Yantao & Li, Huaqing & Wang, Lin, 2021. "Discovering spatiotemporal characteristics of passenger travel with mobile trajectory big data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    2. Jing Wu & Jingwen Li & Yue Ma, 2019. "Exploring the Relationship between Potential and Actual of Urban Waterfront Spaces in Wuhan Based on Social Networks," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    3. Chengming Li & Zhaoxin Dai & Weixiang Peng & Jianming Shen, 2019. "Green Travel Mode: Trajectory Data Cleansing Method for Shared Electric Bicycles," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    4. Jing Wu & Xirui Chen & Shulin Chen, 2019. "Temporal Characteristics of Waterfronts in Wuhan City and People’s Behavioral Preferences Based on Social Media Data," Sustainability, MDPI, vol. 11(22), pages 1-37, November.
    5. Helai Huang & Jialing Wu & Fang Liu & Yiwei Wang, 2020. "Measuring Accessibility Based on Improved Impedance and Attractive Functions Using Taxi Trajectory Data," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    6. Chaogui Kang & Dongwan Fan & Hongzan Jiao, 2021. "Validating activity, time, and space diversity as essential components of urban vitality," Environment and Planning B, , vol. 48(5), pages 1180-1197, June.
    7. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    8. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.
    9. Tang, Jinjun & Liang, Jian & Zhang, Shen & Huang, Helai & Liu, Fang, 2018. "Inferring driving trajectories based on probabilistic model from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 566-577.
    10. He, Zhengbing, 2020. "Spatial-temporal fractal of urban agglomeration travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    11. Shaheen, Susan & Cohen, Adam & Broader, Jacquelyn, 2022. "Shared Micromobility: Policy, Practices, and Emerging Futures," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8xc1k3rw, Institute of Transportation Studies, UC Berkeley.
    12. He, Zhangyuan & Zhao, Pengjun & Xiao, Zuopeng & Huang, Xin & Li, Zhaoxiang & Kang, Tingting, 2024. "Exploring the distance decay in port hinterlands under port regionalization using truck GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    13. Mepparambath, Rakhi Manohar & Soh, Yong Sheng & Jayaraman, Vasundhara & Tan, Hong En & Ramli, Muhamad Azfar, 2023. "A novel modelling approach of integrated taxi and transit mode and route choice using city-scale emerging mobility data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    14. Milne, Dave & Watling, David, 2019. "Big data and understanding change in the context of planning transport systems," Journal of Transport Geography, Elsevier, vol. 76(C), pages 235-244.
    15. Xintao Liu & Joseph Y. J. Chow & Songnian Li, 2018. "Online monitoring of local taxi travel momentum and congestion effects using projections of taxi GPS-based vector fields," Journal of Geographical Systems, Springer, vol. 20(3), pages 253-274, July.
    16. Zong, Fang & Tian, Yongda & He, Yanan & Tang, Jinjun & Lv, Jianyu, 2019. "Trip destination prediction based on multi-day GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 258-269.
    17. Song Li & Fei Xue & Chuyu Xia & Jian Zhang & Ao Bian & Yuexi Lang & Jun Zhou, 2022. "A Big Data-Based Commuting Carbon Emissions Accounting Method—A Case of Hangzhou," Land, MDPI, vol. 11(6), pages 1-18, June.
    18. Jiang, Jincheng & Xu, Zhihua & Zhang, Zhenxin & Zhang, Jie & Liu, Kang & Kong, Hui, 2023. "Revealing the fractal and self-similarity of realistic collective human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    19. Kang Wu & Jingxian Tang & Ying Long, 2019. "Delineating the Regional Economic Geography of China by the Approach of Community Detection," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    20. Kim, Kyoungok, 2018. "Exploring the difference between ridership patterns of subway and taxi: Case study in Seoul," Journal of Transport Geography, Elsevier, vol. 66(C), pages 213-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:160-:d:301474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.