IDEAS home Printed from https://ideas.repec.org/r/kap/transp/v26y1999i2p231-250.html
   My bibliography  Save this item

An analysis of time allocation to in-home and out-of-home discretionary activities across working days and non- working days

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Italo Meloni & Erika Spissu & Massimiliano Bez, 2007. "A Model of the Dynamic Process of Time Allocation to Discretionary Activities," Transportation Science, INFORMS, vol. 41(1), pages 15-28, February.
  2. Thomas de Graaff & Piet Rietveld, 2004. "ICT and Substitution Between Out-of-Home and at-Home Work: The Importance of Timing," Environment and Planning A, , vol. 36(5), pages 879-896, May.
  3. Drago Bokal & Mitja Steinbacher, 2019. "Phases of psychologically optimal learning experience: task-based time allocation model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(3), pages 863-885, September.
  4. Tang, Jia & Mokhtarian, Patricia L. & Zhen, Feng, 2020. "How do passengers allocate and evaluate their travel time? Evidence from a survey on the Shanghai–Nanjing high speed rail corridor, China," Journal of Transport Geography, Elsevier, vol. 85(C).
  5. Sugiarto, Sugiarto & Miwa, Tomio & Morikawa, Takayuki, 2017. "Inclusion of latent constructs in utilitarian resource allocation model for analyzing revenue spending options in congestion charging policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 36-53.
  6. Golob, Thomas F. & Regan, A C, 2000. "Impacts of Information Technology on Personal Travel and Commercial Vehicle Operations: Research Challenges and Opportunities," University of California Transportation Center, Working Papers qt0zh556db, University of California Transportation Center.
  7. Akar, Gulsah & Clifton, Kelly J. & Doherty, Sean T., 2012. "Redefining activity types: Who participates in which leisure activity?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1194-1204.
  8. I. Meloni & L. Guala & A. Loddo, 2004. "Time allocation to discretionary in-home, out-of-home activities and to trips," Transportation, Springer, vol. 31(1), pages 69-96, February.
  9. Lovejoy, Kristin, 2012. "Mobility Fulfillment Among Low-car Households: Implications for Reducing Auto Dependence in the United States," Institute of Transportation Studies, Working Paper Series qt4v44b5qn, Institute of Transportation Studies, UC Davis.
  10. Ruiz, Tomás & Habib, Khandker Nurul, 2016. "Scheduling decision styles on leisure and social activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 304-317.
  11. Marcela Munizaga & Sergio Jara-Díaz & Paulina Greeven & Chandra Bhat, 2008. "Econometric Calibration of the Joint Time Assignment--Mode Choice Model," Transportation Science, INFORMS, vol. 42(2), pages 208-219, May.
  12. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2017. "Beyond transport time: A review of time use modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 209-230.
  13. Golob, Thomas F., 2002. "travelbehavior.com - Activity Approaches to Modeling the Effects of Information Technology on Personal Travel Behavior," University of California Transportation Center, Working Papers qt9t40s1mc, University of California Transportation Center.
  14. Golob, Thomas F. & Regan, Amelia C., 2001. "Impacts of Information Technology on Personal Tavel and Commercial Vehicle Operations: Research Challenges and Opportunities," University of California Transportation Center, Working Papers qt95r7j7vk, University of California Transportation Center.
  15. Bhat, Chandra R. & Srinivasan, Sivaramakrishnan & Sen, Sudeshna, 2006. "A joint model for the perfect and imperfect substitute goods case: Application to activity time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 827-850, December.
  16. Pinjari, Abdul Rawoof & Bhat, Chandra, 2010. "A multiple discrete-continuous nested extreme value (MDCNEV) model: Formulation and application to non-worker activity time-use and timing behavior on weekdays," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 562-583, May.
  17. Chandra Bhat & Konstadinos Goulias & Ram Pendyala & Rajesh Paleti & Raghuprasad Sidharthan & Laura Schmitt & Hsi-Hwa Hu, 2013. "A household-level activity pattern generation model with an application for Southern California," Transportation, Springer, vol. 40(5), pages 1063-1086, September.
  18. Langerudi, Mehran Fasihozaman & Javanmardi, Mahmoud & Shabanpour, Ramin & Rashidi, Taha Hossein & Mohammadian, Abolfazl, 2017. "Incorporating in-home activities in ADAPTS activity-based framework: A sequential conditional probability approach," Journal of Transport Geography, Elsevier, vol. 61(C), pages 48-60.
  19. Xiao Fu & William Lam, 2014. "A network equilibrium approach for modelling activity-travel pattern scheduling problems in multi-modal transit networks with uncertainty," Transportation, Springer, vol. 41(1), pages 37-55, January.
  20. Ram Pendyala & Toshiyuki Yamamoto & Ryuichi Kitamura, 2002. "On the formulation of time-space prisms to model constraints on personal activity-travel engagement," Transportation, Springer, vol. 29(1), pages 73-94, February.
  21. Toshiyuki Yamamoto & Ryuichi Kitamura & Ram M Pendyala, 2004. "Comparative Analysis of Time-Space Prism Vertices for Out-of-Home Activity Engagement on Working and Nonworking Days," Environment and Planning B, , vol. 31(2), pages 235-250, April.
  22. Linda Nijland & Theo Arentze & Harry Timmermans, 2013. "Representing and estimating interactions between activities in a need-based model of activity generation," Transportation, Springer, vol. 40(2), pages 413-430, February.
  23. Mikkel Thorhauge & Akshay Vij & Elisabetta Cherchi, 2021. "Heterogeneity in departure time preferences, flexibility and schedule constraints," Transportation, Springer, vol. 48(4), pages 1865-1893, August.
  24. Bhat, Chandra R. & Gossen, Rachel, 2004. "A mixed multinomial logit model analysis of weekend recreational episode type choice," Transportation Research Part B: Methodological, Elsevier, vol. 38(9), pages 767-787, November.
  25. Lee, Yuhwa & Hickman, Mark & Washington, Simon, 2007. "Household type and structure, time-use pattern, and trip-chaining behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1004-1020, December.
  26. Yu Ding & Huapu Lu & Lei Zhang, 2016. "An analysis of activity time use on vehicle usage rationed days," Transportation, Springer, vol. 43(1), pages 145-158, January.
  27. Susanne Nordbakke & Tim Schwanen, 2015. "Transport, unmet activity needs and wellbeing in later life: exploring the links," Transportation, Springer, vol. 42(6), pages 1129-1151, November.
  28. Zhang, Xiaoning & Yang, Hai & Huang, Hai-Jun & Zhang, H. Michael, 2005. "Integrated scheduling of daily work activities and morning-evening commutes with bottleneck congestion," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(1), pages 41-60, January.
  29. Tri Basuki Joewono & Ari K. M. Tarigan & Muhamad Rizki, 2019. "Segmentation, Classification, and Determinants of In-Store Shopping Activity and Travel Behaviour in the Digitalisation Era: The Context of a Developing Country," Sustainability, MDPI, vol. 11(6), pages 1-23, March.
  30. Astroza, Sebastian & Bhat, Prerna C. & Bhat, Chandra R. & Pendyala, Ram M. & Garikapati, Venu M., 2018. "Understanding activity engagement across weekdays and weekend days: A multivariate multiple discrete-continuous modeling approach," Journal of choice modelling, Elsevier, vol. 28(C), pages 56-70.
  31. Jacobsen, Joyce P. & Kooreman, Peter, 2005. "Timing constraints and the allocation of time: The effects of changing shopping hours regulations in The Netherlands," European Economic Review, Elsevier, vol. 49(1), pages 9-27, January.
  32. Ettema, Dick & Bastin, Fabian & Polak, John & Ashiru, Olu, 2007. "Modelling the joint choice of activity timing and duration," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 827-841, November.
  33. Dimas B. E. Dharmowijoyo & Yusak O. Susilo & Anders Karlström, 2016. "Day-to-day variability in travellers’ activity-travel patterns in the Jakarta metropolitan area," Transportation, Springer, vol. 43(4), pages 601-621, July.
  34. Lin, Tao & Wang, Donggen, 2015. "Tradeoffs between in- and out-of-residential neighborhood locations for discretionary activities and time use: do social contexts matter?," Journal of Transport Geography, Elsevier, vol. 47(C), pages 119-127.
  35. Hirte, Georg & Tscharaktschiew, Stefan, 2018. "The impact of anti-congestion policies and the role of labor-supply margins," CEPIE Working Papers 04/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
  36. Khan, Mubassira & Machemehl, Randy, 2017. "Commercial vehicles time of day choice behavior in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 68-83.
  37. Dimas B. E. Dharmowijoyo & Yusak O. Susilo & Anders Karlström, 2018. "On complexity and variability of individuals’ discretionary activities," Transportation, Springer, vol. 45(1), pages 177-204, January.
  38. Jonathan Stiles & Michael J. Smart, 2021. "Working at home and elsewhere: daily work location, telework, and travel among United States knowledge workers," Transportation, Springer, vol. 48(5), pages 2461-2491, October.
  39. Moyin Li & Nebiyou Tilahun, 2020. "A comparative analysis of discretionary time allocation for social and non-social activities in the U.S. between 2003 and 2013," Transportation, Springer, vol. 47(2), pages 893-909, April.
  40. Thomas Longden, 2016. "The Regularity and Irregularity of Travel: an Analysis of the Consistency of Travel Times Associated with Subsistence, Maintenance and Discretionary Activities," Working Papers 2016.49, Fondazione Eni Enrico Mattei.
  41. Gulsah Akar & Kelly Clifton & Sean Doherty, 2011. "Discretionary activity location choice: in-home or out-of-home?," Transportation, Springer, vol. 38(1), pages 101-122, January.
  42. Yu Ding & Huapu Lu & Lei Zhang, 2016. "An analysis of activity time use on vehicle usage rationed days," Transportation, Springer, vol. 43(1), pages 145-158, January.
  43. Pinjari, Abdul Rawoof & Bhat, Chandra R. & Hensher, David A., 2009. "Residential self-selection effects in an activity time-use behavior model," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 729-748, August.
  44. Ferdous, Nazneen & Eluru, Naveen & Bhat, Chandra R. & Meloni, Italo, 2010. "A multivariate ordered-response model system for adults' weekday activity episode generation by activity purpose and social context," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 922-943, September.
  45. Morris, Eric A. & Blumenberg, Evelyn & Guerra, Erick, 2020. "Does lacking a car put the brakes on activity participation? Private vehicle access and access to opportunities among low-income adults," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 375-397.
  46. Zhi-Chun Li & William Lam & S. Wong & A. Sumalee, 2010. "An activity-based approach for scheduling multimodal transit services," Transportation, Springer, vol. 37(5), pages 751-774, September.
  47. Kato, Hironori & Matsumoto, Manabu, 2009. "Intra-household interaction in a nuclear family: A utility-maximizing approach," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 191-203, February.
  48. Xiao Fu & William H. K. Lam, 2018. "Modelling joint activity-travel pattern scheduling problem in multi-modal transit networks," Transportation, Springer, vol. 45(1), pages 23-49, January.
  49. Lee, Yuhwa & Washington, Simon & Frank, Lawrence D., 2009. "Examination of relationships between urban form, household activities, and time allocation in the Atlanta Metropolitan Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 360-373, May.
  50. Boarnet, Marlon & Crane, Randall, 2001. "The influence of land use on travel behavior: specification and estimation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 823-845, November.
  51. Ram Pendyala & Chandra Bhat, 2004. "An Exploration of the Relationship between Timing and Duration of Maintenance Activities," Transportation, Springer, vol. 31(4), pages 429-456, November.
  52. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
  53. Longden, Thomas, 2016. "The Regularity and Irregularity of Travel: an Analysis of the Consistency of Travel Times Associated with Subsistence, Maintenance and Discretionary Activities," ET: Economic Theory 243150, Fondazione Eni Enrico Mattei (FEEM).
  54. Manoj, M. & Verma, Ashish, 2015. "Activity–travel behaviour of non-workers from Bangalore City in India," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 400-424.
  55. Dharmowijoyo, Dimas B.E. & Susilo, Yusak O. & Karlström, Anders & Adiredja, Lili Somantri, 2015. "Collecting a multi-dimensional three-weeks household time-use and activity diary in the Bandung Metropolitan Area, Indonesia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 231-246.
  56. Yusak Susilo & Kay Axhausen, 2014. "Repetitions in individual daily activity–travel–location patterns: a study using the Herfindahl–Hirschman Index," Transportation, Springer, vol. 41(5), pages 995-1011, September.
  57. Pellegrini, Andrea & Pinjari, Abdul Rawoof & Maggi, Rico, 2021. "A multiple discrete continuous model of time use that accommodates non-additively separable utility functions along with time and monetary budget constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 37-53.
  58. Christa Hubers & Tim Schwanen & Martin Dijst, 2008. "Ict And Temporal Fragmentation Of Activities: An Analytical Framework And Initial Empirical Findings," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 99(5), pages 528-546, December.
  59. Thorhauge, Mikkel & Kassahun, Habtamu Tilahun & Cherchi, Elisabetta & Haustein, Sonja, 2020. "Mobility needs, activity patterns and activity flexibility: How subjective and objective constraints influence mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 255-272.
  60. Ge Gao & Huijun Sun & Jianjun Wu, 2019. "Activity-based trip chaining behavior analysis in the network under the parking fee scheme," Transportation, Springer, vol. 46(3), pages 647-669, June.
  61. Kang, Hejun & Scott, Darren M., 2010. "Exploring day-to-day variability in time use for household members," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 609-619, October.
  62. Chang-Hyeon Joh & Theo A Arentze & Harry J P Timmermans, 2005. "A Utility-Based Analysis of Activity Time Allocation Decisions Underlying Segmented Daily Activity–Travel Patterns," Environment and Planning A, , vol. 37(1), pages 105-125, January.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.