IDEAS home Printed from https://ideas.repec.org/r/kap/netspa/v7y2007i4p353-376.html
   My bibliography  Save this item

Modeling Urban Land Use Change and Urban Sprawl: Calgary, Alberta, Canada

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Beygi Heidarlou, Hadi & Banj Shafiei, Abbas & Erfanian, Mahdi & Tayyebi, Amin & Alijanpour, Ahmad, 2019. "Effects of preservation policy on land use changes in Iranian Northern Zagros forests," Land Use Policy, Elsevier, vol. 81(C), pages 76-90.
  2. Young, Mischa & Tanguay, Georges A. & Lachapelle, Ugo, 2016. "Transportation costs and urban sprawl in Canadian metropolitan areas," Research in Transportation Economics, Elsevier, vol. 60(C), pages 25-34.
  3. Miriam Steurer & Caroline Bayr, 2020. "Measuring Urban Sprawl using Land Use Data," Graz Economics Papers 2020-02, University of Graz, Department of Economics.
  4. Ehab Hendawy & A. A. Belal & E. S. Mohamed & Abdelaziz Elfadaly & Beniamino Murgante & Ali A. Aldosari & Rosa Lasaponara, 2019. "The Prediction and Assessment of the Impacts of Soil Sealing on Agricultural Land in the North Nile Delta (Egypt) Using Satellite Data and GIS Modeling," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
  5. Forouhar, Navid & Forouhar, Amir & Hasankhani, Mahnoosh, 2022. "Commercial gentrification and neighbourhood change: A dynamic view on local residents' quality of life in Tehran," Land Use Policy, Elsevier, vol. 112(C).
  6. Baining Zhao & Xuzhe Wang & Tianyu Zhang & Rongye Shi & Fengli Xu & Fanhang Man & Erbing Chen & Yang Li & Yong Li & Tao Sun & Xinlei Chen, 2024. "Estimating and modeling spontaneous mobility changes during the COVID-19 pandemic without stay-at-home orders," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
  7. Vermeiren, Karolien & Crols, Tomas & Uljee, Inge & De Nocker, Leo & Beckx, Carolien & Pisman, Ann & Broekx, Steven & Poelmans, Lien, 2022. "Modelling urban sprawl and assessing its costs in the planning process: A case study in Flanders, Belgium," Land Use Policy, Elsevier, vol. 113(C).
  8. Andrés Fielbaum & Sergio Jara-Diaz & Antonio Gschwender, 2017. "A Parametric Description of Cities for the Normative Analysis of Transport Systems," Networks and Spatial Economics, Springer, vol. 17(2), pages 343-365, June.
  9. Hugo Badia, 2020. "Comparison of Bus Network Structures in Face of Urban Dispersion for a Ring-Radial City," Networks and Spatial Economics, Springer, vol. 20(1), pages 233-271, March.
  10. Auwalu Faisal Koko & Wu Yue & Ghali Abdullahi Abubakar & Roknisadeh Hamed & Akram Ahmed Noman Alabsi, 2020. "Monitoring and Predicting Spatio-Temporal Land Use/Land Cover Changes in Zaria City, Nigeria, through an Integrated Cellular Automata and Markov Chain Model (CA-Markov)," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
  11. Luca Salvati & Alberto Sabbi, 2014. "Identifying urban diffusion in compact cities through a comparative multivariate procedure," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(2), pages 557-575, September.
  12. Zambon, Ilaria & Serra, Pere & Grigoriadis, Efstathios & Carlucci, Margherita & Salvati, Luca, 2017. "Emerging urban centrality: An entropy-based indicator of polycentric development and economic growth," Land Use Policy, Elsevier, vol. 68(C), pages 365-371.
  13. Xing, Yingying & Wang, Ke & Lu, Jian John, 2020. "Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China," Journal of Transport Geography, Elsevier, vol. 87(C).
  14. Jie Bao & Chengcheng Xu & Pan Liu & Wei Wang, 2017. "Exploring Bikesharing Travel Patterns and Trip Purposes Using Smart Card Data and Online Point of Interests," Networks and Spatial Economics, Springer, vol. 17(4), pages 1231-1253, December.
  15. Jaebin Lim & Myounggu Kang, 2023. "Finding Sprawl Factors and Pirate Development: Based on Spatial Analysis of Population Grid Changes from 2014 to 2022 in SMA, South Korea," Land, MDPI, vol. 12(11), pages 1-18, October.
  16. Hui Luan & Daniel Fuller, 2022. "Urban form in Canada at a small-area level: Quantifying “compactness†and “sprawl†with bayesian multivariate spatial factor analysis," Environment and Planning B, , vol. 49(4), pages 1300-1313, May.
  17. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
  18. Ki Hwan Cho & Do-Hun Lee & Tae-Su Kim & Gab-Sue Jang, 2021. "Measurement of 30-Year Urban Expansion Using Spatial Entropy in Changwon and Gimhae, Korea," Sustainability, MDPI, vol. 13(2), pages 1-12, January.
  19. Roque Daniela & Masoumi Houshmand E., 2017. "Longitudinal correlations of car ownership with socio-economics, urban form, and transport infrastructure in Latin America: Example from Ensenada, Mexico," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 37(37), pages 109-123, September.
  20. Xianyuan Zhan & Satish Ukkusuri & Feng Zhu, 2014. "Inferring Urban Land Use Using Large-Scale Social Media Check-in Data," Networks and Spatial Economics, Springer, vol. 14(3), pages 647-667, December.
  21. de Abreu e Silva, João & Correia, Marcos, 2023. "The main drivers of urban sprawl in Portuguese medium cities between 2001 and 2011," Land Use Policy, Elsevier, vol. 132(C).
  22. Hashem Dadashpoor & Fardis Salarian, 2020. "Urban sprawl on natural lands: analyzing and predicting the trend of land use changes and sprawl in Mazandaran city region, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 593-614, February.
  23. Shivangi S. Somvanshi & Oshin Bhalla & Phool Kunwar & Madhulika Singh & Prafull Singh, 2020. "Monitoring spatial LULC changes and its growth prediction based on statistical models and earth observation datasets of Gautam Budh Nagar, Uttar Pradesh, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1073-1091, February.
  24. Selvinaz Gülçin Bozkurt & Melih Basaraner, 2024. "Spatio-temporal investigation of urbanization and its impact on habitat fragmentation in natural ecosystems of Istanbul using Shannon’s entropy and landscape metrics in GIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 26879-26907, October.
  25. Patuelli, Roberto & Reggiani, Aura & Nijkamp, Peter & Bade, Franz-Josef, 2010. "The evolution of the commuting network in Germany: Spatial and connectivity patterns," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 5-37.
  26. Getu, Kenu & Bhat, H Gangadhara, 2021. "Analysis of spatio-temporal dynamics of urban sprawl and growth pattern using geospatial technologies and landscape metrics in Bahir Dar, Northwest Ethiopia," Land Use Policy, Elsevier, vol. 109(C).
  27. Gebdang B. Ruben & Ke Zhang & Zengchuan Dong & Jun Xia, 2020. "Analysis and Projection of Land-Use/Land-Cover Dynamics through Scenario-Based Simulations Using the CA-Markov Model: A Case Study in Guanting Reservoir Basin, China," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
  28. Steurer, Miriam & Bayr, Caroline, 2020. "Measuring urban sprawl using land use data," Land Use Policy, Elsevier, vol. 97(C).
  29. Verstegen, Judith A. & Goch, Katarzyna, 2022. "Pattern-oriented calibration and validation of urban growth models: Case studies of Dublin, Milan and Warsaw," Land Use Policy, Elsevier, vol. 112(C).
  30. Yuan Gao & Chuanrong Zhang & Qingsong He & Yaolin Liu, 2017. "Urban Ecological Security Simulation and Prediction Using an Improved Cellular Automata (CA) Approach—A Case Study for the City of Wuhan in China," IJERPH, MDPI, vol. 14(6), pages 1-20, June.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.