IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v14y2017i6p643-d101597.html
   My bibliography  Save this article

Urban Ecological Security Simulation and Prediction Using an Improved Cellular Automata (CA) Approach—A Case Study for the City of Wuhan in China

Author

Listed:
  • Yuan Gao

    (School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

  • Chuanrong Zhang

    (Department of Geography and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269-4148, USA)

  • Qingsong He

    (School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, China)

  • Yaolin Liu

    (School of Resource and Environmental Science, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
    Collaborative Innovation Center for Geospatial Information Technology, Wuhan 430079, China)

Abstract

Ecological security is an important research topic, especially urban ecological security. As highly populated eco-systems, cities always have more fragile ecological environments. However, most of the research on urban ecological security in literature has focused on evaluating current or past status of the ecological environment. Very little literature has carried out simulation or prediction of future ecological security. In addition, there is even less literature exploring the urban ecological environment at a fine scale. To fill-in the literature gap, in this study we simulated and predicted urban ecological security at a fine scale (district level) using an improved Cellular Automata (CA) approach. First we used the pressure-state-response (PSR) method based on grid-scale data to evaluate urban ecological security. Then, based on the evaluation results, we imported the geographically weighted regression (GWR) concept into the CA model to simulate and predict urban ecological security. We applied the improved CA approach in a case study—simulating and predicting urban ecological security for the city of Wuhan in Central China. By comparing the simulated ecological security values from 2010 using the improved CA model to the actual ecological security values of 2010, we got a relatively high value of the kappa coefficient, which indicates that this CA model can simulate or predict well future development of ecological security in Wuhan. Based on the prediction results for 2020, we made some policy recommendations for each district in Wuhan.

Suggested Citation

  • Yuan Gao & Chuanrong Zhang & Qingsong He & Yaolin Liu, 2017. "Urban Ecological Security Simulation and Prediction Using an Improved Cellular Automata (CA) Approach—A Case Study for the City of Wuhan in China," IJERPH, MDPI, vol. 14(6), pages 1-20, June.
  • Handle: RePEc:gam:jijerp:v:14:y:2017:i:6:p:643-:d:101597
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/14/6/643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/14/6/643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Batty, 2005. "Agents, Cells, and Cities: New Representational Models for Simulating Multiscale Urban Dynamics," Environment and Planning A, , vol. 37(8), pages 1373-1394, August.
    2. Heng Sun & Wayne Forsythe & Nigel Waters, 2007. "Modeling Urban Land Use Change and Urban Sprawl: Calgary, Alberta, Canada," Networks and Spatial Economics, Springer, vol. 7(4), pages 353-376, December.
    3. Han, Baolong & Liu, Hongxiao & Wang, Rusong, 2015. "Urban ecological security assessment for cities in the Beijing–Tianjin–Hebei metropolitan region based on fuzzy and entropy methods," Ecological Modelling, Elsevier, vol. 318(C), pages 217-225.
    4. Daniel P. McMillen, 2004. "Geographically Weighted Regression: The Analysis of Spatially Varying Relationships," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 554-556.
    5. Mike Hodson & Simon Marvin, 2009. "‘Urban Ecological Security’: A New Urban Paradigm?," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 33(1), pages 193-215, March.
    6. Huang, Qing & Wang, Ranghui & Ren, Zhiyuan & Li, Jing & Zhang, Huizhi, 2007. "Regional ecological security assessment based on long periods of ecological footprint analysis," Resources, Conservation & Recycling, Elsevier, vol. 51(1), pages 24-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Longqing Liu & Shidong Zhang & Wenshu Liu & Hongjiao Qu & Luo Guo, 2024. "Spatiotemporal Changes and Simulation Prediction of Ecological Security Pattern on the Qinghai–Tibet Plateau Based on Deep Learning," Land, MDPI, vol. 13(7), pages 1-20, July.
    2. Hong Ran & Yonggang Ma & Zhonglin Xu, 2022. "Evaluation and Prediction of Land Use Ecological Security in the Kashgar Region Based on Grid GIS," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    3. Jie Wang & Xi Chen & Zhaohui Zhang, 2023. "Spatial Differences and Drivers of Tourism Ecological Security in China’s Border Areas," Sustainability, MDPI, vol. 15(15), pages 1-17, August.
    4. Tekleweini Gereslassie & Ababo Workineh & Onyango Janet Atieno & Jun Wang, 2019. "Determination of Occurrences, Distribution, Health Impacts of Organochlorine Pesticides in Soils of Central China," IJERPH, MDPI, vol. 16(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Wang & Xi Chen & Zhaohui Zhang, 2023. "Spatial Differences and Drivers of Tourism Ecological Security in China’s Border Areas," Sustainability, MDPI, vol. 15(15), pages 1-17, August.
    2. Linyu Xu & Hao Yin & Zhaoxue Li & Shun Li, 2014. "Land Ecological Security Evaluation of Guangzhou, China," IJERPH, MDPI, vol. 11(10), pages 1-22, October.
    3. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    4. Mehdi Sheikh Goodarzi & Yousef Sakieh & Shabnam Navardi, 2017. "Scenario-based urban growth allocation in a rapidly developing area: a modeling approach for sustainability analysis of an urban-coastal coupled system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 1103-1126, June.
    5. Vanesa Castán Broto & Harriet Bulkeley, 2013. "Maintaining Climate Change Experiments: Urban Political Ecology and the Everyday Reconfiguration of Urban Infrastructure," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 37(6), pages 1934-1948, November.
    6. Zambon, Ilaria & Serra, Pere & Grigoriadis, Efstathios & Carlucci, Margherita & Salvati, Luca, 2017. "Emerging urban centrality: An entropy-based indicator of polycentric development and economic growth," Land Use Policy, Elsevier, vol. 68(C), pages 365-371.
    7. Jie Bao & Chengcheng Xu & Pan Liu & Wei Wang, 2017. "Exploring Bikesharing Travel Patterns and Trip Purposes Using Smart Card Data and Online Point of Interests," Networks and Spatial Economics, Springer, vol. 17(4), pages 1231-1253, December.
    8. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    9. Dirk Heinrichs & Kerstin Krellenberg & Michail Fragkias, 2013. "Urban Responses to Climate Change: Theories and Governance Practice in Cities of the Global South," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 37(6), pages 1865-1878, November.
    10. Nick Malleson & Andrew Evans & Tony Jenkins, 2009. "An Agent-Based Model of Burglary," Environment and Planning B, , vol. 36(6), pages 1103-1123, December.
    11. Lu, Yanhua & Yan, Lijuan & Li, Jie & Liang, Yunliang & Yang, Chuanjie & Li, Guang & Wu, Jiangqi & Xu, Hua, 2024. "Spatiotemporal evolution of county level ecological security based on an emergy ecological footprint model: The case of Dingxi, China," Ecological Modelling, Elsevier, vol. 490(C).
    12. Jie Li & Kun Jia & Yanxu Liu & Bo Yuan & Mu Xia & Wenwu Zhao, 2021. "Spatiotemporal Distribution of Zika Virus and Its Spatially Heterogeneous Relationship with the Environment," IJERPH, MDPI, vol. 18(1), pages 1-14, January.
    13. Dimitris Ballas & Richard Kingston & John Stillwell & Jianhui Jin, 2007. "Building a Spatial Microsimulation-Based Planning Support System for Local Policy Making," Environment and Planning A, , vol. 39(10), pages 2482-2499, October.
    14. Yihe Huang & Shouyun Shen & Wenmin Hu & Yurou Li & Guo Li, 2022. "Construction of Cultural Heritage Tourism Corridor for the Dissemination of Historical Culture: A Case Study of Typical Mountainous Multi-Ethnic Area in China," Land, MDPI, vol. 12(1), pages 1-17, December.
    15. Janka Lengyel & Seraphim Alvanides & Jan Friedrich, 2023. "Modelling the interdependence of spatial scales in urban systems," Environment and Planning B, , vol. 50(1), pages 182-197, January.
    16. Ki Hwan Cho & Do-Hun Lee & Tae-Su Kim & Gab-Sue Jang, 2021. "Measurement of 30-Year Urban Expansion Using Spatial Entropy in Changwon and Gimhae, Korea," Sustainability, MDPI, vol. 13(2), pages 1-12, January.
    17. Fei Han & Xinqi Zheng & Peipei Wang & Dongya Liu & Minrui Zheng, 2022. "Effects of Meteorological Factors and Air Pollutants on COVID-19 Transmission under the Action of Control Measures," IJERPH, MDPI, vol. 19(15), pages 1-19, July.
    18. Hong Ran & Yonggang Ma & Zhonglin Xu, 2022. "Evaluation and Prediction of Land Use Ecological Security in the Kashgar Region Based on Grid GIS," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    19. Mengting Chen & Liang Zheng & Dike Zhang & Jiangfeng Li, 2022. "Spatio-Temporal Evolution and Obstacle Factors Analysis of Tourism Ecological Security in Huanggang Dabieshan UNESCO Global Geopark," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    20. Yang Tang & Yongbo Yuan & Qingyu Zhong, 2021. "Evaluation of Land Comprehensive Carrying Capacity and Spatio-Temporal Analysis of the Harbin-Changchun Urban Agglomeration," IJERPH, MDPI, vol. 18(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:14:y:2017:i:6:p:643-:d:101597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.