IDEAS home Printed from https://ideas.repec.org/r/jss/jstsof/v021i07.html
   My bibliography  Save this item

ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Natalia Khorunzhina & Jean-François Richard, 2019. "Finite Gaussian Mixture Approximations to Analytically Intractable Density Kernels," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 991-1017, March.
  2. Zhang, Yi & Cheng, Chuntian & Cai, Huaxiang & Jin, Xiaoyu & Jia, Zebin & Wu, Xinyu & Su, Huaying & Yang, Tiantian, 2022. "Long-term stochastic model predictive control and efficiency assessment for hydro-wind-solar renewable energy supply system," Applied Energy, Elsevier, vol. 316(C).
  3. Ibrar ul Hassan Akhtar, 2023. "Exploring Covid-19 Pandemic Initial 2020 Curve Based On Statistical Evaluation," Acta Scientifica Malaysia (ASM), Zibeline International Publishing, vol. 7(1), pages 08-16, February.
  4. Karim M Abadir & Michel Lubrano, 2023. "Explicit solutions for the asymptotically-optimal bandwidth in cross validation," AMSE Working Papers 2336, Aix-Marseille School of Economics, France.
  5. R. N. Rattihalli & S. B. Patil, 2021. "Data Dependent Asymmetric Kernels for Estimating the Density Function," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 155-186, February.
  6. Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
  7. Matias D. Cattaneo & Michael Jansson & Xinwei Ma, 2019. "lpdensity: Local Polynomial Density Estimation and Inference," Papers 1906.06529, arXiv.org, revised Feb 2021.
  8. Pulkkinen, Seppo, 2015. "Ridge-based method for finding curvilinear structures from noisy data," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 89-109.
  9. Suqin Ge & João Macieira, 2024. "Unobserved Worker Quality and Inter‐Industry Wage Differentials," Journal of Industrial Economics, Wiley Blackwell, vol. 72(1), pages 459-515, March.
  10. Delicado, Pedro & Vieu, Philippe, 2015. "Optimal level sets for bivariate density representation," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 1-18.
  11. Hernández-Lobato, José Miguel & Suárez, Alberto, 2011. "Semiparametric bivariate Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2038-2058, June.
  12. Guillermo Basulto-Elias & Alicia L. Carriquiry & Kris Brabanter & Daniel J. Nordman, 2021. "Bivariate Kernel Deconvolution with Panel Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 122-151, May.
  13. Aurélien Vivancos & Gerry Closs & Cédric Tentelier, 2017. "Are 2D space-use analyses adapted to animals living in 3D environments? A case study on a fish shoal," Behavioral Ecology, International Society for Behavioral Ecology, vol. 28(2), pages 485-493.
  14. Karim M Abadir & Michel Lubrano, 2024. "Explicit solutions for the asymptotically optimal bandwidth in cross-validation," Post-Print hal-04678541, HAL.
  15. Kim, Wongon & Yoon, Heonjun & Lee, Guesuk & Kim, Taejin & Youn, Byeng D., 2020. "A new calibration metric that considers statistical correlation: Marginal Probability and Correlation Residuals," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  16. Lees, Kirsty J. & Guerin, Andrew J. & Masden, Elizabeth A., 2016. "Using kernel density estimation to explore habitat use by seabirds at a marine renewable wave energy test facility," Marine Policy, Elsevier, vol. 63(C), pages 35-44.
  17. Senga Kiessé, Tristan & Corson, Michael S. & Eugène, Maguy, 2022. "The potential of kernel density estimation for modelling relations among dairy farm characteristics," Agricultural Systems, Elsevier, vol. 199(C).
  18. Mirosław Kornatka & Anna Gawlak, 2021. "An Analysis of the Operation of Distribution Networks Using Kernel Density Estimators," Energies, MDPI, vol. 14(21), pages 1-12, October.
  19. Jiabo Yin & Shenglian Guo & Zhangjun Liu & Guang Yang & Yixuan Zhong & Dedi Liu, 2018. "Uncertainty Analysis of Bivariate Design Flood Estimation and its Impacts on Reservoir Routing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1795-1809, March.
  20. Azadbakhsh, Mahdis & Jankowski, Hanna & Gao, Xin, 2014. "Computing confidence intervals for log-concave densities," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 248-264.
  21. Uddameri, Venkatesh & Ghaseminejad, Ali & Hernandez, E. Annette, 2020. "A tiered stochastic framework for assessing crop yield loss risks due to water scarcity under different uncertainty levels," Agricultural Water Management, Elsevier, vol. 238(C).
  22. Oleksii Pokotylo & Karl Mosler, 2019. "Classification with the pot–pot plot," Statistical Papers, Springer, vol. 60(3), pages 903-931, June.
  23. Batarce, Marco, 2024. "Estimation of discrete choice models with error in variables: An application to revealed preference data with aggregate service level variables," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
  24. Pablo Martínez-Camblor & Sonia Pérez-Fernández & Susana Díaz-Coto, 2021. "Optimal classification scores based on multivariate marker transformations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 581-599, December.
  25. Bram Thijssen & Lodewyk F A Wessels, 2020. "Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-25, March.
  26. Akpoti, Komlavi & Dossou-Yovo, Elliott R. & Zwart, Sander J. & Kiepe, Paul, 2021. "The potential for expansion of irrigated rice under alternate wetting and drying in Burkina Faso," Agricultural Water Management, Elsevier, vol. 247(C).
  27. R. C. Rodríguez-Caro & E. Graciá & S. P. Blomberg & H. Cayuela & M. Grace & C. P. Carmona & H. A. Pérez-Mendoza & A. Giménez & R. Salguero-Gómez, 2023. "Anthropogenic impacts on threatened species erode functional diversity in chelonians and crocodilians," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  28. Schoch, Tobias & Staub, Kaspar & Pfister, Christian, 2012. "Social inequality and the biological standard of living: An anthropometric analysis of Swiss conscription data, 1875–1950," Economics & Human Biology, Elsevier, vol. 10(2), pages 154-173.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.